On the modularity of elliptic curves over $\mathbf {Q}$: Wild $3$-adic exercises
HTML articles powered by AMS MathViewer
- by Christophe Breuil, Brian Conrad, Fred Diamond and Richard Taylor;
- J. Amer. Math. Soc. 14 (2001), 843-939
- DOI: https://doi.org/10.1090/S0894-0347-01-00370-8
- Published electronically: May 15, 2001
- HTML | PDF | Request permission
Abstract:
We complete the proof that every elliptic curve over the rational numbers is modular.References
- Pierre Berthelot, Lawrence Breen, and William Messing, Théorie de Dieudonné cristalline. II, Lecture Notes in Mathematics, vol. 930, Springer-Verlag, Berlin, 1982 (French). MR 667344, DOI 10.1007/BFb0093025
- Christophe Breuil, Schémas en groupe et modules filtrés, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 2, 93–97 (French, with English and French summaries). MR 1669039, DOI 10.1016/S0764-4442(99)80144-X [Br2]br3 C. Breuil, Groupes $p$-divisibles, groupes finis et modules filtrés, Annals of Math. 152 (2000), 489–549.
- Henri Carayol, Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409–468 (French). MR 870690, DOI 10.24033/asens.1512
- Henri Carayol, Sur les représentations galoisiennes modulo $l$ attachées aux formes modulaires, Duke Math. J. 59 (1989), no. 3, 785–801 (French). MR 1046750, DOI 10.1215/S0012-7094-89-05937-1
- Brian Conrad, Ramified deformation problems, Duke Math. J. 97 (1999), no. 3, 439–513. MR 1682986, DOI 10.1215/S0012-7094-99-09718-1
- Brian Conrad, Fred Diamond, and Richard Taylor, Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc. 12 (1999), no. 2, 521–567. MR 1639612, DOI 10.1090/S0894-0347-99-00287-8
- A. J. de Jong, Finite locally free group schemes in characteristic $p$ and Dieudonné modules, Invent. Math. 114 (1993), no. 1, 89–137. MR 1235021, DOI 10.1007/BF01232664 [De]del P. Deligne, Formes modulaires et représentations $\ell$-adiques, in: Lecture Notes in Math. 179, Springer-Verlag, 1971, pp. 139–172.
- Pierre Deligne and Jean-Pierre Serre, Formes modulaires de poids $1$, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507–530 (1975) (French). MR 379379, DOI 10.24033/asens.1277
- Fred Diamond, The refined conjecture of Serre, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 22–37. MR 1363493
- Fred Diamond, On deformation rings and Hecke rings, Ann. of Math. (2) 144 (1996), no. 1, 137–166. MR 1405946, DOI 10.2307/2118586
- Fred Diamond and Richard Taylor, Lifting modular mod $l$ representations, Duke Math. J. 74 (1994), no. 2, 253–269. MR 1272977, DOI 10.1215/S0012-7094-94-07413-9
- Torsten Ekedahl, An effective version of Hilbert’s irreducibility theorem, Séminaire de Théorie des Nombres, Paris 1988–1989, Progr. Math., vol. 91, Birkhäuser Boston, Boston, MA, 1990, pp. 241–249. MR 1104709
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- Alfred Rosenblatt, Sur les points singuliers des équations différentielles, C. R. Acad. Sci. Paris 209 (1939), 10–11 (French). MR 85
- Jean-Marc Fontaine and Barry Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41–78. MR 1363495
- Paul Gérardin, Facteurs locaux des algèbres simples de rang $4$. I, Reductive groups and automorphic forms, I (Paris, 1976/1977) Publ. Math. Univ. Paris VII, vol. 1, Univ. Paris VII, Paris, 1978, pp. 37–77 (French). MR 680785 [Kh]khare C. Khare, A local analysis of congruences in the $(p,p)$ case: Part II, Invent. Math. 143 (2001), no. 1, 129–155. [Kl]klein F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Teubner, 1884.
- Robert P. Langlands, Base change for $\textrm {GL}(2)$, Annals of Mathematics Studies, No. 96, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1980. MR 574808
- J. Manoharmayum, Pairs of mod 3 and mod 5 representations arising from elliptic curves, Math. Res. Lett. 6 (1999), no. 5-6, 735–754. MR 1739229, DOI 10.4310/MRL.1999.v6.n6.a12
- B. Mazur, Number theory as gadfly, Amer. Math. Monthly 98 (1991), no. 7, 593–610. MR 1121312, DOI 10.2307/2324924
- Michel Raynaud, Schémas en groupes de type $(p,\dots , p)$, Bull. Soc. Math. France 102 (1974), 241–280 (French). MR 419467, DOI 10.24033/bsmf.1779
- Kenneth A. Ribet, Galois representations attached to eigenforms with Nebentypus, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Lecture Notes in Math., Vol. 601, Springer, Berlin-New York, 1977, pp. 17–51. MR 453647
- N. I. Shepherd-Barron and R. Taylor, $\textrm {mod}\ 2$ and $\textrm {mod}\ 5$ icosahedral representations, J. Amer. Math. Soc. 10 (1997), no. 2, 283–298. MR 1415322, DOI 10.1090/S0894-0347-97-00226-9
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237, DOI 10.1007/978-1-4757-5673-9
- Jean-Pierre Serre, Sur les représentations modulaires de degré $2$ de $\mathrm {Gal}(\overline {\mathbf {Q}}/\mathbf {Q})$, Duke Math. J. 54 (1987), no. 1, 179–230 (French). MR 885783, DOI 10.1215/S0012-7094-87-05413-5
- Goro Shimura, On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields, Nagoya Math. J. 43 (1971), 199–208. MR 296050, DOI 10.1017/S0027763000014471
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, NJ, 1971. Publications of the Mathematical Society of Japan, No. 11. MR 314766 [Sh3]shhist G. Shimura, Response to 1996 Steele Prize, Notices of the AMS 43 (1996), 1344–1347.
- J. T. Tate, $p$-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966) Springer, Berlin-New York, 1967, pp. 158–183. MR 231827
- Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572. MR 1333036, DOI 10.2307/2118560
- Jerrold Tunnell, Artin’s conjecture for representations of octahedral type, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 173–175. MR 621884, DOI 10.1090/S0273-0979-1981-14936-3
- André Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 168 (1967), 149–156 (German). MR 207658, DOI 10.1007/BF01361551
- André Weil, Scientific works. Collected papers. Vol. I (1926–1951), Springer-Verlag, New York-Heidelberg, 1979 (French). MR 537937
- Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. MR 1333035, DOI 10.2307/2118559
Bibliographic Information
- Christophe Breuil
- Affiliation: Département de Mathématiques, CNRS, Université Paris-Sud, 91405 Orsay cedex, France
- MR Author ID: 615110
- Email: Christophe.BREUIL@math.u-psud.fr
- Brian Conrad
- Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- Address at time of publication: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- MR Author ID: 637175
- Email: bconrad@math.harvard.edu, bdconrad@math.lsa.umich.edu
- Fred Diamond
- Affiliation: Department of Mathematics, Brandeis University, Waltham, Massachusetts 02454
- Email: fdiamond@euclid.math.brandeis.edu
- Richard Taylor
- Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- Email: rtaylor@math.harvard.edu
- Received by editor(s): February 28, 2000
- Received by editor(s) in revised form: January 1, 2001
- Published electronically: May 15, 2001
- Additional Notes: The first author was supported by the CNRS. The second author was partially supported by a grant from the NSF. The third author was partially supported by a grant from the NSF and an AMS Centennial Fellowship, and was working at Rutgers University during much of the research. The fourth author was partially supported by a grant from the NSF and by the Miller Institute for Basic Science.
- © Copyright 2001 American Mathematical Society
- Journal: J. Amer. Math. Soc. 14 (2001), 843-939
- MSC (2000): Primary 11G05; Secondary 11F80
- DOI: https://doi.org/10.1090/S0894-0347-01-00370-8
- MathSciNet review: 1839918