Quivers, Floer cohomology, and braid group actions
Authors:
Mikhail Khovanov and Paul Seidel
Journal:
J. Amer. Math. Soc. 15 (2002), 203-271
MSC (2000):
Primary 18G10, 53D40, 20F36
DOI:
https://doi.org/10.1090/S0894-0347-01-00374-5
Published electronically:
September 24, 2001
MathSciNet review:
1862802
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We consider the derived categories of modules over a certain family (
) of graded rings, and Floer cohomology of Lagrangian intersections in the symplectic manifolds which are the Milnor fibres of simple singularities of type
We show that each of these two rather different objects encodes the topology of curves on an
-punctured disc. We prove that the braid group
acts faithfully on the derived category of
-modules, and that it injects into the symplectic mapping class group of the Milnor fibers. The philosophy behind our results is as follows. Using Floer cohomology, one should be able to associate to the Milnor fibre a triangulated category (its construction has not been carried out in detail yet). This triangulated category should contain a full subcategory which is equivalent, up to a slight difference in the grading, to the derived category of
-modules. The full embedding would connect the two occurrences of the braid group, thus explaining the similarity between them.
- 1. V. I. Arnol′d, Some remarks on symplectic monodromy of Milnor fibrations, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 99–103. MR 1362824
- 2. I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Algebraic vector bundles on 𝑃ⁿ and problems of linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 66–67 (Russian). MR 509387
- 3. Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527. MR 1322847, https://doi.org/10.1090/S0894-0347-96-00192-0
- 4. Joseph Bernstein, Igor Frenkel, and Mikhail Khovanov, A categorification of the Temperley-Lieb algebra and Schur quotients of 𝑈(𝔰𝔩₂) via projective and Zuckerman functors, Selecta Math. (N.S.) 5 (1999), no. 2, 199–241. MR 1714141, https://doi.org/10.1007/s000290050047
- 5. J. N. Bernstein and S. I. Gel′fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245–285. MR 581584
- 6. Joan S. Birman, Braids, links, and mapping class groups, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 82. MR 0375281
- 7. Joan S. Birman and Hugh M. Hilden, On isotopies of homeomorphisms of Riemann surfaces, Ann. of Math. (2) 97 (1973), 424–439. MR 325959, https://doi.org/10.2307/1970830
- 8. Egbert Brieskorn, Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen, Math. Ann. 166 (1966), 76–102 (German). MR 206973, https://doi.org/10.1007/BF01361440
- 9. Y. Eliashberg, H. Hofer, and D. Salamon, Lagrangian intersections in contact geometry, Geom. Funct. Anal. 5 (1995), no. 2, 244–269. MR 1334868, https://doi.org/10.1007/BF01895668
- 10. A. Fathi, F. Laudenbach, and V. Poénaru, Travaux de Thurston sur les surfaces, Astérisque, vol. 66-67, Soc. Math. France, 1979.
- 11. Andreas Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), no. 3, 513–547. MR 965228
- 12. Andreas Floer, A relative Morse index for the symplectic action, Comm. Pure Appl. Math. 41 (1988), no. 4, 393–407. MR 933228, https://doi.org/10.1002/cpa.3160410402
- 13. Andreas Floer, Witten’s complex and infinite-dimensional Morse theory, J. Differential Geom. 30 (1989), no. 1, 207–221. MR 1001276
- 14. Andreas Floer, Helmut Hofer, and Dietmar Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995), no. 1, 251–292. MR 1360618, https://doi.org/10.1215/S0012-7094-95-08010-7
- 15. Kenji Fukaya, Morse homotopy, 𝐴^{∞}-category, and Floer homologies, Proceedings of GARC Workshop on Geometry and Topology ’93 (Seoul, 1993) Lecture Notes Ser., vol. 18, Seoul Nat. Univ., Seoul, 1993, pp. 1–102. MR 1270931
- 16. -, Floer homology for three-manifolds with boundary I, Preprint, 1997.
- 17. Sergei I. Gelfand and Yuri I. Manin, Methods of homological algebra, Springer-Verlag, Berlin, 1996. Translated from the 1988 Russian original. MR 1438306
- 18. Frederick M. Goodman and Hans Wenzl, The Temperley-Lieb algebra at roots of unity, Pacific J. Math. 161 (1993), no. 2, 307–334. MR 1242201
- 19. André Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47–82 (French). MR 145538, https://doi.org/10.1007/BF02566892
- 20. H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993), no. 3, 515–563. MR 1244912, https://doi.org/10.1007/BF01232679
- 21. S. Huerfano and M. Khovanov, A category for the adjoint representation, math.QA/0002087.
- 22.
R. S. Irving, Projective modules in the category
, preprint, 1982.
- 23. M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no.3, 359-426; math.QA/9908171. CMP 2000:08
- 24. Maxim Kontsevich, Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 120–139. MR 1403918
- 25. Paul Martin, Potts models and related problems in statistical mechanics, Series on Advances in Statistical Mechanics, vol. 5, World Scientific Publishing Co., Inc., Teaneck, NJ, 1991. MR 1103994
- 26. Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science Publications. MR 1373431
- 27. John Atwell Moody, The Burau representation of the braid group 𝐵_{𝑛} is unfaithful for large 𝑛, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 379–384. MR 1098347, https://doi.org/10.1090/S0273-0979-1991-16080-5
- 28. Yong-Geun Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I, Comm. Pure Appl. Math. 46 (1993), no. 7, 949–993. MR 1223659, https://doi.org/10.1002/cpa.3160460702
- 29. Yong-Geun Oh, On the structure of pseudo-holomorphic discs with totally real boundary conditions, J. Geom. Anal. 7 (1997), no. 2, 305–327. MR 1646780, https://doi.org/10.1007/BF02921725
- 30. -, Floer theory for non-compact Lagrangian submanifolds, Preprint, 2000.
- 31. Marcin Poźniak, Floer homology, Novikov rings and clean intersections, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 119–181. MR 1736217, https://doi.org/10.1090/trans2/196/08
- 32. Joel Robbin and Dietmar Salamon, The Maslov index for paths, Topology 32 (1993), no. 4, 827–844. MR 1241874, https://doi.org/10.1016/0040-9383(93)90052-W
- 33.
R. Rouquier and A. Zimmermann, Picard groups for derived module categories, preprint, 1998, http://www.math.jussieu.fr/
rouquier/.
- 34. Dietmar Salamon, Morse theory, the Conley index and Floer homology, Bull. London Math. Soc. 22 (1990), no. 2, 113–140. MR 1045282, https://doi.org/10.1112/blms/22.2.113
- 35. Dietmar Salamon and Eduard Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992), no. 10, 1303–1360. MR 1181727, https://doi.org/10.1002/cpa.3160451004
- 36. Paul Seidel, Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 (2000), no. 1, 103–149 (English, with English and French summaries). MR 1765826
- 37. Paul Seidel, Lagrangian two-spheres can be symplectically knotted, J. Differential Geom. 52 (1999), no. 1, 145–171. MR 1743463
- 38. P. Seidel and R. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), no. 1, 37-108; math.AG/0001043. CMP 2001:12
- 39. V. De Silva, Products in the symplectic Floer homology of Lagrangian intersections, Ph.D. thesis, Oxford University, 1998.
- 40. Claude Viterbo, Intersection de sous-variétés lagrangiennes, fonctionnelles d’action et indice des systèmes hamiltoniens, Bull. Soc. Math. France 115 (1987), no. 3, 361–390 (French, with English summary). MR 926533
- 41. Alan Weinstein, Lagrangian submanifolds and Hamiltonian systems, Ann. of Math. (2) 98 (1973), 377–410. MR 331428, https://doi.org/10.2307/1970911
- 42. B. W. Westbury, The representation theory of the Temperley-Lieb algebras, Math. Z. 219 (1995), no. 4, 539–565. MR 1343661, https://doi.org/10.1007/BF02572380
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 18G10, 53D40, 20F36
Retrieve articles in all journals with MSC (2000): 18G10, 53D40, 20F36
Additional Information
Mikhail Khovanov
Affiliation:
Department of Mathematics, University of California at Davis, Davis, California 95616-8633
Email:
mikhail@math.ucdavis.edu
Paul Seidel
Affiliation:
Department of Mathematics, Ecole Polytechnique, F-91128 Palaiseau, France – and – School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
Email:
seidel@math.polytechnique.fr, seidel@math.ias.edu
DOI:
https://doi.org/10.1090/S0894-0347-01-00374-5
Received by editor(s):
July 6, 2000
Received by editor(s) in revised form:
April 3, 2001
Published electronically:
September 24, 2001
Additional Notes:
The first author was supported by NSF grants DMS 96-27351 and DMS 97-29992 and, later on, by the University of California at Davis. The second author was supported by NSF grant DMS-9304580 and by the Institut Universitaire de France.
Article copyright:
© Copyright 2001
American Mathematical Society