Locally analytic distributions and $p$-adic representation theory, with applications to $GL_{2}$
HTML articles powered by AMS MathViewer
- by Peter Schneider and Jeremy Teitelbaum;
- J. Amer. Math. Soc. 15 (2002), 443-468
- DOI: https://doi.org/10.1090/S0894-0347-01-00377-0
- Published electronically: October 18, 2001
- PDF | Request permission
Abstract:
In this paper we study continuous representations of locally $L$-analytic groups $G$ in locally convex $K$-vector spaces, where $L$ is a finite extension of $\mathbb {Q}_p$ and $K$ is a spherically complete nonarchimedean extension field of $L$. The class of such representations includes both the smooth representations of Langlands theory and the finite dimensional algebraic representations of $G$, along with interesting new objects such as the action of $G$ on global sections of equivariant vector bundles on $p$-adic symmetric spaces. We introduce a restricted category of such representations that we call “strongly admissible” and we show that, when $G$ is compact, our category is anti-equivalent to a subcategory of the category of modules over the locally analytic distribution algebra of $G$. As an application we prove the topological irreducibility of generic members of the $p$-adic principal series for $GL_2(\mathbb {Q}_p)$. Our hope is that our definition of strongly admissible representation may be used as a foundation for a general theory of continuous $K$-valued representations of locally $L$-analytic groups.References
- Yvette Amice, Interpolation $p$-adique, Bull. Soc. Math. France 92 (1964), 117–180 (French). MR 188199, DOI 10.24033/bsmf.1606
- Yvette Amice, Duals, Proceedings of the Conference on $p$-adic Analysis (Nijmegen, 1978) Katholieke Univ., Nijmegen, 1978, pp. 1–15. MR 522117
- Julian Bonder, Über die Darstellung gewisser, in der Theorie der Flügelschwingungen auftretender Integrale durch Zylinderfunktionen, Z. Angew. Math. Mech. 19 (1939), 251–252 (German). MR 42, DOI 10.1002/zamm.19390190409
- N. Bourbaki, Topological vector spaces. Chapters 1–5, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1987. Translated from the French by H. G. Eggleston and S. Madan. MR 910295, DOI 10.1007/978-3-642-61715-7
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7), Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1333, Hermann, Paris, 1967 (French). MR 219078
- N. De Grande-De Kimpe, J. Kakol, C. Perez-Garcia, and W. H. Schikhof, $p$-adic locally convex inductive limits, $p$-adic functional analysis (Nijmegen, 1996) Lecture Notes in Pure and Appl. Math., vol. 192, Dekker, New York, 1997, pp. 159–222. MR 1459211
- Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 302656 [Fe1]Fe1 Féaux de Lacroix, C. T., $p$-adische Distributionen, Diplomarbeit, Köln 1992. [Fe2]Fe2 Féaux de Lacroix, C. T., Einige Resultate über die topologischen Darstellungen $p$-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem $p$-adischen Körper, Thesis, Köln 1997, Schriftenreihe Math. Inst. Univ. Münster, 3. Serie, Heft 23, pp. 1-111 (1999).
- Laurent Gruson, Théorie de Fredholm $p$-adique, Bull. Soc. Math. France 94 (1966), 67–95 (French). MR 226381, DOI 10.24033/bsmf.1635
- J. J. Corliss, Upper limits to the real roots of a real algebraic equation, Amer. Math. Monthly 46 (1939), 334–338. MR 4, DOI 10.1080/00029890.1939.11998880
- Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR 899071
- Hikosaburo Komatsu, Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan 19 (1967), 366–383. MR 217557, DOI 10.2969/jmsj/01930366
- Michel Lazard, Les zéros des fonctions analytiques d’une variable sur un corps valué complet, Inst. Hautes Études Sci. Publ. Math. 14 (1962), 47–75 (French). MR 152519, DOI 10.1007/BF02684326
- Yasuo Morita, Analytic representations of $\textrm {SL}_2$ over a ${\mathfrak {p}}$-adic number field. III, Automorphic forms and number theory (Sendai, 1983) Adv. Stud. Pure Math., vol. 7, North-Holland, Amsterdam, 1985, pp. 185–222. MR 876106, DOI 10.2969/aspm/00710185 [NFA]NFA Schneider, P., Nonarchimedean Functional Analysis, Berlin-Heidelberg-New York: Springer 2001. [Sch]Sch Schneider, P., $p$-adic representation theory, The 1999 Britton Lectures at McMaster University. Available at www.uni-muenster.de/math/u/ schneider. [ST]ST Schneider, P., Teitelbaum, J., $p$-adic boundary values, To appear in Astérisque.
- G. A. Miller, Groups which contain ten or eleven proper subgroups, Proc. Nat. Acad. Sci. U.S.A. 25 (1939), 540–543. MR 31, DOI 10.1073/pnas.25.10.540
- J. van Tiel, Ensembles pseudo-polaires dans les espaces localement $K$-convexes, Indag. Math. 28 (1966), 369–373 (French). Nederl. Akad. Wetensch. Proc. Ser. A 69. MR 198198, DOI 10.1016/S1385-7258(66)50043-9
Bibliographic Information
- Peter Schneider
- Affiliation: Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, D-48149 Münster, Germany
- MR Author ID: 156590
- Email: pschnei@math.uni-muenster.de
- Jeremy Teitelbaum
- Affiliation: Department of Mathematics, Statistics, and Computer Science (M/C 249), University of Illinois at Chicago, 851 S. Morgan St., Chicago, Illinois 60607
- Email: jeremy@uic.edu
- Received by editor(s): December 16, 1999
- Received by editor(s) in revised form: May 16, 2001
- Published electronically: October 18, 2001
- © Copyright 2001 American Mathematical Society
- Journal: J. Amer. Math. Soc. 15 (2002), 443-468
- MSC (2000): Primary 11S80, 22E50
- DOI: https://doi.org/10.1090/S0894-0347-01-00377-0
- MathSciNet review: 1887640