Torification and factorization of birational maps
HTML articles powered by AMS MathViewer
- by Dan Abramovich, Kalle Karu, Kenji Matsuki and Jarosław Włodarczyk;
- J. Amer. Math. Soc. 15 (2002), 531-572
- DOI: https://doi.org/10.1090/S0894-0347-02-00396-X
- Published electronically: April 5, 2002
- HTML | PDF | Request permission
Abstract:
Building on work of the fourth author and Morelli’s work, we prove the weak factorization conjecture for birational maps in characteristic zero: a birational map between complete nonsingular varieties over an algebraically closed field $K$ of characteristic zero is a composite of blowings up and blowings down with nonsingular centers.References
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- D. Abramovich and A. J. de Jong, Smoothness, semistability, and toroidal geometry, J. Algebraic Geom. 6 (1997), no. 4, 789–801. MR 1487237
- D. Abramovich and K. Karu, Weak semistable reduction in characteristic 0, Invent. Math. 139 (2000), no. 2, 241–273. MR 1738451, DOI 10.1007/s002229900024
- P. Erdös, On the distribution of normal point groups, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 294–297. MR 2000, DOI 10.1073/pnas.26.4.294
- Dan Abramovich and Jianhua Wang, Equivariant resolution of singularities in characteristic $0$, Math. Res. Lett. 4 (1997), no. 2-3, 427–433. MR 1453072, DOI 10.4310/MRL.1997.v4.n3.a11
- Selman Akbulut and Henry King, Topology of real algebraic sets, Mathematical Sciences Research Institute Publications, vol. 25, Springer-Verlag, New York, 1992. MR 1225577, DOI 10.1007/978-1-4613-9739-7
- Victor V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997) World Sci. Publ., River Edge, NJ, 1998, pp. 1–32. MR 1672108
- Victor V. Batyrev, Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 1, 5–33. MR 1677693, DOI 10.1007/PL00011158
- Edward Bierstone and Pierre D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207–302. MR 1440306, DOI 10.1007/s002220050141 Bittner F. Bittner, The universal Euler characteristic for varieties of characteristic zero, preprint arXiv:math.AG/0111062. Borisov-Libgober L. A. Borisov and A. Libgober, Elliptic Genera of singular varieties, preprint arXiv:math.AG/0007108.
- Michel Brion and Claudio Procesi, Action d’un tore dans une variété projective, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 509–539 (French). MR 1103602, DOI 10.1007/s101070100288
- Chris Christensen, Strong domination/weak factorization of three-dimensional regular local rings, J. Indian Math. Soc. (N.S.) 45 (1981), no. 1-4, 21–47 (1984). MR 828858
- Alessio Corti, Factoring birational maps of threefolds after Sarkisov, J. Algebraic Geom. 4 (1995), no. 2, 223–254. MR 1311348
- Bruce Crauder, Birational morphisms of smooth threefolds collapsing three surfaces to a point, Duke Math. J. 48 (1981), no. 3, 589–632. MR 630587
- Steven Dale Cutkosky, Local factorization of birational maps, Adv. Math. 132 (1997), no. 2, 167–315. MR 1491444, DOI 10.1006/aima.1997.1675
- Steven Dale Cutkosky, Local monomialization and factorization of morphisms, Astérisque 260 (1999), vi+143 (English, with English and French summaries). MR 1734239 Cutkosky-32 S. D. Cutkosky, Monomialization of morphisms from 3-folds to surfaces, preprint arXiv:math.AG/0010002
- Dale Cutkosky and Olivier Piltant, Monomial resolutions of morphisms of algebraic surfaces, Comm. Algebra 28 (2000), no. 12, 5935–5959. Special issue in honor of Robin Hartshorne. MR 1808613, DOI 10.1080/00927870008827198
- V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85–134, 247 (Russian). MR 495499
- V. I. Danilov, Birational geometry of three-dimensional toric varieties, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 971–982, 1135 (Russian). MR 675526
- Jan Denef and François Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), no. 1, 201–232. MR 1664700, DOI 10.1007/s002220050284
- Igor V. Dolgachev and Yi Hu, Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math. 87 (1998), 5–56. With an appendix by Nicolas Ressayre. MR 1659282, DOI 10.1007/BF02698859
- G. Ewald, Blow-ups of smooth toric $3$-varieties, Abh. Math. Sem. Univ. Hamburg 57 (1987), 193–201. MR 927174, DOI 10.1007/BF02941610 Franke J. Franke, Riemann-Roch in functorial form, preprint 1992, 78 pp.
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037, DOI 10.1515/9781400882526
- Henri Gillet and Christophe Soulé, Direct images in non-Archimedean Arakelov theory, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 2, 363–399 (English, with English and French summaries). MR 1775354, DOI 10.5802/aif.1758 Hironaka1 H. Hironaka, On the theory of birational blowing-up, Harvard University Ph.D. Thesis 1960.
- Heisuke Hironaka, An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures, Ann. of Math. (2) 75 (1962), 190–208. MR 139182, DOI 10.2307/1970426
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; 79 (1964), 205–326. MR 199184, DOI 10.2307/1970547
- Heisuke Hironaka, Flattening theorem in complex-analytic geometry, Amer. J. Math. 97 (1975), 503–547. MR 393556, DOI 10.2307/2373721
- Yi Hu, The geometry and topology of quotient varieties of torus actions, Duke Math. J. 68 (1992), no. 1, 151–184. MR 1185821, DOI 10.1215/S0012-7094-92-06806-2
- Yi Hu, Relative geometric invariant theory and universal moduli spaces, Internat. J. Math. 7 (1996), no. 2, 151–181. MR 1382720, DOI 10.1142/S0129167X96000098 Hu-Keel Y. Hu and Ś. Keel, A GIT proof of Włodarczyk’s weighted factorization theorem, preprint arXiv:math.AG/9904146.
- Shigeru Iitaka, Algebraic geometry, North-Holland Mathematical Library, vol. 24, Springer-Verlag, New York-Berlin, 1982. An introduction to birational geometry of algebraic varieties; Graduate Texts in Mathematics, 76. MR 637060, DOI 10.1007/978-1-4613-8119-8
- A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93. MR 1423020, DOI 10.1007/BF02698644 Karu-thesis K. Karu, Boston University dissertation, 1999. http://math.bu.edu/people/kllkr/th.ps
- Kazuya Kato, Toric singularities, Amer. J. Math. 116 (1994), no. 5, 1073–1099. MR 1296725, DOI 10.2307/2374941
- Yujiro Kawamata, On the finiteness of generators of a pluricanonical ring for a $3$-fold of general type, Amer. J. Math. 106 (1984), no. 6, 1503–1512. MR 765589, DOI 10.2307/2374403
- Yujiro Kawamata, Elementary contractions of algebraic $3$-folds, Ann. of Math. (2) 119 (1984), no. 1, 95–110. MR 736561, DOI 10.2307/2006964
- Yujiro Kawamata, Crepant blowing-up of $3$-dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. (2) 127 (1988), no. 1, 93–163. MR 924674, DOI 10.2307/1971417
- G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 335518, DOI 10.1007/BFb0070318
- Henry C. King, Resolving singularities of maps, Real algebraic geometry and topology (East Lansing, MI, 1993) Contemp. Math., vol. 182, Amer. Math. Soc., Providence, RI, 1995, pp. 135–154. MR 1318736, DOI 10.1090/conm/182/02092
- Yujiro Kawamata, Elementary contractions of algebraic $3$-folds, Ann. of Math. (2) 119 (1984), no. 1, 95–110. MR 736561, DOI 10.2307/2006964 Kontsevich M. Kontsevich, Lecture at Orsay (December 7, 1995).
- Vik. S. Kulikov, Decomposition of birational mappings of three-dimensional varieties outside of codimension $2$, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 4, 881–895 (Russian). MR 670170
- Gilles Lachaud and Marc Perret, Un invariant birationnel des variétés de dimension 3 sur un corps fini, J. Algebraic Geom. 9 (2000), no. 3, 451–458 (French, with English and French summaries). MR 1752011 Levine-Morel-cr M. N. Levine and F. Morel, Cobordisme Algébrique II, C. R. Acad. Sci. Paris 332 (2001), no. 9, 815–820. Levine-Morel M. N. Levine and F. Morel, Algebraic cobordism, preprint. Looijenga-motivic E. Looijenga, Motivic measures, preprint arXiv:math.AG/0006220
- Domingo Luna, Slices étales, Sur les groupes algébriques, Supplément au Bull. Soc. Math. France, Tome 101, Soc. Math. France, Paris, 1973, pp. 81–105 (French). MR 342523, DOI 10.24033/msmf.110 Matsuki K. Matsuki, Introduction to the Mori program, Universitext, Springer Verlag, Berlin, 2001. Matsuki-notes K. Matsuki, Lectures on factorization of birational maps, RIMS preprint, 1999.
- J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, NJ, 1963. Based on lecture notes by M. Spivak and R. Wells. MR 163331, DOI 10.1515/9781400881802
- Reinhold Baer, Nets and groups, Trans. Amer. Math. Soc. 46 (1939), 110–141. MR 35, DOI 10.1090/S0002-9947-1939-0000035-5
- Robert Morelli, The birational geometry of toric varieties, J. Algebraic Geom. 5 (1996), no. 4, 751–782. MR 1486987 Morelli2 R. Morelli, Correction to “The birational geometry of toric varieties", 1997 http://www.math.utah.edu/~morelli/Math/math.html
- Shigefumi Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), no. 1, 133–176. MR 662120, DOI 10.2307/2007050
- Shigefumi Mori, Flip theorem and the existence of minimal models for $3$-folds, J. Amer. Math. Soc. 1 (1988), no. 1, 117–253. MR 924704, DOI 10.1090/S0894-0347-1988-0924704-X
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906, DOI 10.1007/978-3-642-57916-5
- Tadao Oda, Torus embeddings and applications, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 57, Tata Institute of Fundamental Research, Bombay; Springer-Verlag, Berlin-New York, 1978. Based on joint work with Katsuya Miyake. MR 546291
- Tadao Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 15, Springer-Verlag, Berlin, 1988. An introduction to the theory of toric varieties; Translated from the Japanese. MR 922894
- Rahul Pandharipande, A compactification over $\overline {M}_g$ of the universal moduli space of slope-semistable vector bundles, J. Amer. Math. Soc. 9 (1996), no. 2, 425–471. MR 1308406, DOI 10.1090/S0894-0347-96-00173-7
- Henry C. Pinkham, Factorization of birational maps in dimension $3$, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 343–371. MR 713260, DOI 10.1090/pspum/040.2/713260
- Michel Raynaud and Laurent Gruson, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1–89 (French). MR 308104, DOI 10.1007/BF01390094
- Miles Reid, Canonical $3$-folds, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 273–310. MR 605348
- Miles Reid, Minimal models of canonical $3$-folds, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 131–180. MR 715649, DOI 10.2969/aspm/00110131
- Miles Reid, Decomposition of toric morphisms, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 395–418. MR 717617 Reid4 M. Reid, Birational geometry of 3-folds according to Sarkisov, preprint 1991.
- Stefan Kempisty, Sur les fonctions à variation bornée au sens de Tonelli, Bull. Sém. Math. Univ. Wilno 2 (1939), 13–21 (French). MR 46 Sarkisov V. G. Sarkisov, Birational maps of standard ${\mathbb {Q}}$-Fano fiberings, I. V. Kurchatov Institute Atomic Energy preprint, 1989.
- Mary Schaps, Birational morphisms of smooth threefolds collapsing three surfaces to a curve, Duke Math. J. 48 (1981), no. 2, 401–420. MR 620257
- David L. Shannon, Monoidal transforms of regular local rings, Amer. J. Math. 95 (1973), 294–320. MR 330154, DOI 10.2307/2373787
- V. V. Shokurov, A nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 3, 635–651 (Russian). MR 794958
- Oswald Teichmüller, Erreichbare Randpunkte, Deutsche Math. 4 (1939), 455–461 (German). MR 49
- Mina Teicher, Factorization of a birational morphism between $4$-folds, Math. Ann. 256 (1981), no. 3, 391–399. MR 626957, DOI 10.1007/BF01679705
- Michael Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994), no. 2, 317–353. MR 1273268, DOI 10.1007/BF01232244
- Michael Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996), no. 3, 691–723. MR 1333296, DOI 10.1090/S0894-0347-96-00204-4
- Orlando Villamayor, Constructiveness of Hironaka’s resolution, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 1, 1–32. MR 985852, DOI 10.24033/asens.1573
- Jarosław Włodarczyk, Decomposition of birational toric maps in blow-ups & blow-downs, Trans. Amer. Math. Soc. 349 (1997), no. 1, 373–411. MR 1370654, DOI 10.1090/S0002-9947-97-01701-7
- Jarosław Włodarczyk, Birational cobordisms and factorization of birational maps, J. Algebraic Geom. 9 (2000), no. 3, 425–449. MR 1752010 Wlodarczyk3 J. Włodarczyk, Toroidal Varieties and the Weak Factorization Theorem, preprint arXiv:math.AG/9904076.
- Oscar Zariski, Algebraic surfaces, Second supplemented edition, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 61, Springer-Verlag, New York-Heidelberg, 1971. With appendices by S. S. Abhyankar, J. Lipman, and D. Mumford. MR 469915
Bibliographic Information
- Dan Abramovich
- Affiliation: Department of Mathematics, Boston University, 111 Cummington Street, Boston, Massachusetts 02215
- MR Author ID: 309312
- ORCID: 0000-0003-0719-0989
- Email: abrmovic@math.bu.edu
- Kalle Karu
- Affiliation: Department of Mathematics, Harvard University, One Oxford Street, Cambridge, Massachusetts 02139
- Email: kkaru@math.harvard.edu
- Kenji Matsuki
- Affiliation: Department of Mathematics, Purdue University, 1395 Mathematical Sciences Building, West Lafayette, Indiana 47907-1395
- Email: kmatsuki@math.purdue.edu
- Jarosław Włodarczyk
- Affiliation: Instytut Matematyki UW, Banacha 2, 02-097 Warszawa, Poland
- Email: jwlodar@mimuw.edu.pl
- Received by editor(s): March 14, 2000
- Received by editor(s) in revised form: June 1, 2000
- Published electronically: April 5, 2002
- Additional Notes: The first author was partially supported by NSF grant DMS-9700520 and by an Alfred P. Sloan research fellowship. In addition, he would like to thank the Institut des Hautes Études Scientifiques, Centre Emile Borel (UMS 839, CNRS/UPMC), and Max Planck Institut für Mathematik for a fruitful visiting period.
The second author was partially supported by NSF grant DMS-9700520
The third author has received no financial support from NSF or NSA during the course of this work.
The fourth author was supported in part by Polish KBN grant 2 P03 A 005 16 and NSF grant DMS-0100598. - © Copyright 2002 American Mathematical Society
- Journal: J. Amer. Math. Soc. 15 (2002), 531-572
- MSC (2000): Primary 14E05
- DOI: https://doi.org/10.1090/S0894-0347-02-00396-X
- MathSciNet review: 1896232