## Families of rationally connected varieties

HTML articles powered by AMS MathViewer

- by
Tom Graber, Joe Harris and Jason Starr
**HTML**| PDF - J. Amer. Math. Soc.
**16**(2003), 57-67 Request permission

## Abstract:

We prove that every one-parameter family of complex rationally connected varieties has a section.## References

- K. Behrend,
*Gromov-Witten invariants in algebraic geometry*, Invent. Math.**127**(1997), no. 3, 601–617. MR**1431140**, DOI 10.1007/s002220050132 - K. Behrend and B. Fantechi,
*The intrinsic normal cone*, Invent. Math.**128**(1997), no. 1, 45–88. MR**1437495**, DOI 10.1007/s002220050136 - K. Behrend and Yu. Manin,
*Stacks of stable maps and Gromov-Witten invariants*, Duke Math. J.**85**(1996), no. 1, 1–60. MR**1412436**, DOI 10.1215/S0012-7094-96-08501-4 - F. Campana,
*Connexité rationnelle des variétés de Fano*, Ann. Sci. École Norm. Sup. (4)**25**(1992), no. 5, 539–545 (French). MR**1191735**, DOI 10.24033/asens.1658
[C]C A. Clebsch, - William Fulton,
*Hurwitz schemes and irreducibility of moduli of algebraic curves*, Ann. of Math. (2)**90**(1969), 542–575. MR**260752**, DOI 10.2307/1970748 - W. Fulton and R. Pandharipande,
*Notes on stable maps and quantum cohomology*, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR**1492534**, DOI 10.1090/pspum/062.2/1492534
[GHS]GHS2 T. Graber, J. Harris, J. Starr, - János Kollár,
*Rational curves on algebraic varieties*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR**1440180**, DOI 10.1007/978-3-662-03276-3 - János Kollár, Yoichi Miyaoka, and Shigefumi Mori,
*Rationally connected varieties*, J. Algebraic Geom.**1**(1992), no. 3, 429–448. MR**1158625**

*Zur Theorie der Riemann’schen Flachen*, Math Ann.

**6**(1872), 216-230 Springer-Verlag, Berlin, 1996. [FaP]FaP B. Fantechi, R. Pandharipande,

*Stable maps and branch divisors*, Compositio Math.

**130**(2002), 345-364.

*A note on Hurwitz schemes of covers of a positive genus curve*, preprint alg-geom/0205056. [H]H A. Hurwitz,

*Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten*, Math. Ann.

**39**(1891) 1-61.

## Additional Information

**Tom Graber**- Affiliation: Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, Massachusetts 02138
- Email: graber@math.harvard.edu
**Joe Harris**- Affiliation: Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, Massachusetts 02138
- Email: harris@math.harvard.edu
**Jason Starr**- Affiliation: Department of Mathmatics, Massachusetts Institute of technology, Cambridge, Massachusetts 02139
- Email: jstarr@math.mit.edu
- Received by editor(s): September 6, 2001
- Received by editor(s) in revised form: May 3, 2002
- Published electronically: July 29, 2002
- Additional Notes: The first author was partially supported by an NSF Postdoctoral Fellowship.

The second author was partially supported by NSF grant DMS9900025.

The third author was partially supported by a Sloan Dissertation Fellowship. - © Copyright 2002 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**16**(2003), 57-67 - MSC (2000): Primary 14M20, 14D05
- DOI: https://doi.org/10.1090/S0894-0347-02-00402-2
- MathSciNet review: 1937199