Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties
HTML articles powered by AMS MathViewer
- by Konstanze Rietsch
- J. Amer. Math. Soc. 16 (2003), 363-392
- DOI: https://doi.org/10.1090/S0894-0347-02-00412-5
- Published electronically: November 29, 2002
- PDF | Request permission
Erratum: J. Amer. Math. Soc. 21 (2008), 611-614.
Abstract:
We show that the set of totally positive unipotent lower-triangular Toeplitz matrices in $GL_n$ forms a real semi-algebraic cell of dimension $n-1$. Furthermore we prove a natural cell decomposition for its closure. The proof uses properties of the quantum cohomology rings of the partial flag varieties of $GL_n(\mathbb {C})$ relying in particular on the positivity of the structure constants, which are enumerative Gromov–Witten invariants. We also give a characterization of total positivity for Toeplitz matrices in terms of the (quantum) Schubert classes. This work builds on some results of Dale Peterson’s which we explain with proofs in the type $A$ case.References
- Lowell Abrams, The quantum Euler class and the quantum cohomology of the Grassmannians, Israel J. Math. 117 (2000), 335–352. MR 1760598, DOI 10.1007/BF02773576
- Alexander Astashkevich and Vladimir Sadov, Quantum cohomology of partial flag manifolds $F_{n_1\cdots n_k}$, Comm. Math. Phys. 170 (1995), no. 3, 503–528. MR 1337131, DOI 10.1007/BF02099147
- Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), no. 1, 49–149. MR 1405449, DOI 10.1006/aima.1996.0057
- Aaron Bertram, Quantum Schubert calculus, Adv. Math. 128 (1997), no. 2, 289–305. MR 1454400, DOI 10.1006/aima.1997.1627
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- E. Cattani, A. Dickenstein, and B. Sturmfels, Computing multidimensional residues, Algorithms in algebraic geometry and applications (Santander, 1994) Progr. Math., vol. 143, Birkhäuser, Basel, 1996, pp. 135–164. MR 1414449
- Ionuţ Ciocan-Fontanine, Quantum cohomology of flag varieties, Internat. Math. Res. Notices 6 (1995), 263–277. MR 1344348, DOI 10.1155/S1073792895000213
- Ionuţ Ciocan-Fontanine, On quantum cohomology rings of partial flag varieties, Duke Math. J. 98 (1999), no. 3, 485–524. MR 1695799, DOI 10.1215/S0012-7094-99-09815-0
- David A. Cox and Sheldon Katz, Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs, vol. 68, American Mathematical Society, Providence, RI, 1999. MR 1677117, DOI 10.1090/surv/068
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Sergey Fomin, Sergei Gelfand, and Alexander Postnikov, Quantum Schubert polynomials, J. Amer. Math. Soc. 10 (1997), no. 3, 565–596. MR 1431829, DOI 10.1090/S0894-0347-97-00237-3
- Sergey Fomin and Andrei Zelevinsky, Total positivity: tests and parametrizations, Math. Intelligencer 22 (2000), no. 1, 23–33. MR 1745560, DOI 10.1007/BF03024444
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR 1492534, DOI 10.1090/pspum/062.2/1492534 FuWo:SchubProds W. Fulton and C. Woodward, On the quantum product of Schubert classes, Preprint (2001).
- Doron Gepner, Fusion rings and geometry, Comm. Math. Phys. 141 (1991), no. 2, 381–411. MR 1133272, DOI 10.1007/BF02101511
- Alexander Givental and Bumsig Kim, Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys. 168 (1995), no. 3, 609–641. MR 1328256, DOI 10.1007/BF02101846
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523, DOI 10.1002/9781118032527
- Bumsig Kim, Quantum cohomology of partial flag manifolds and a residue formula for their intersection pairings, Internat. Math. Res. Notices 1 (1995), 1–15. MR 1317639, DOI 10.1155/S1073792895000018
- Anatol N. Kirillov, Quantum Schubert polynomials and quantum Schur functions, Internat. J. Algebra Comput. 9 (1999), no. 3-4, 385–404. Dedicated to the memory of Marcel-Paul Schützenberger. MR 1723474, DOI 10.1142/S0218196799000242
- Anatol N. Kirillov and Toshiaki Maeno, Quantum double Schubert polynomials, quantum Schubert polynomials and Vafa-Intriligator formula, Discrete Math. 217 (2000), no. 1-3, 191–223 (English, with English and French summaries). Formal power series and algebraic combinatorics (Vienna, 1997). MR 1766267, DOI 10.1016/S0012-365X(99)00263-0
- Bertram Kostant, Flag manifold quantum cohomology, the Toda lattice, and the representation with highest weight $\rho$, Selecta Math. (N.S.) 2 (1996), no. 1, 43–91. MR 1403352, DOI 10.1007/BF01587939
- Bertram Kostant, Quantum cohomology of the flag manifold as an algebra of rational functions on a unipotent algebraic group, Deformation theory and symplectic geometry (Ascona, 1996) Math. Phys. Stud., vol. 20, Kluwer Acad. Publ., Dordrecht, 1997, pp. 157–175. MR 1480722
- Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447–450 (French, with English summary). MR 660739
- G. Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568. MR 1327548, DOI 10.1007/978-1-4612-0261-5_{2}0
- George Lusztig, Total positivity and canonical bases, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., vol. 9, Cambridge Univ. Press, Cambridge, 1997, pp. 281–295. MR 1635687
- G. Lusztig, Total positivity in partial flag manifolds, Represent. Theory 2 (1998), 70–78. MR 1606402, DOI 10.1090/S1088-4165-98-00046-6 Macd:SchubPol I. G. Macdonald, Notes on Schubert polynomials, LACIM, Montreal, 1991.
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Yuri I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, American Mathematical Society Colloquium Publications, vol. 47, American Mathematical Society, Providence, RI, 1999. MR 1702284, DOI 10.1090/coll/047
- Dusa McDuff and Dietmar Salamon, $J$-holomorphic curves and quantum cohomology, University Lecture Series, vol. 6, American Mathematical Society, Providence, RI, 1994. MR 1286255, DOI 10.1090/ulect/006
- Henryk Minc, Nonnegative matrices, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1988. A Wiley-Interscience Publication. MR 932967
- A. Okun′kov, On representations of the infinite symmetric group, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 240 (1997), no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 2, 166–228, 294 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 96 (1999), no. 5, 3550–3589. MR 1691646, DOI 10.1007/BF02175834 Pet:QCoh D. Peterson, Quantum cohomology of ${G}/{P}$, Lecture Course, M.I.T., Spring Term, 1997. Pet:Montreal —, Quantum cohomology of ${G}/{P}$, Séminaire de Mathématiques Supérieures: Representation Theories and Algebraic Geometry, Université de Montreal, Canada, July 28–Aug. 8, 1997 (unpublished lecture notes). Rie:QCohGr K. Rietsch, Quantum cohomology of Grassmannians and total positivity, Duke Math. J. 113 (2001), no. 3, 521–551.
- Bernd Siebert and Gang Tian, On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator, Asian J. Math. 1 (1997), no. 4, 679–695. MR 1621570, DOI 10.4310/AJM.1997.v1.n4.a2
- Edward Witten, The Verlinde algebra and the cohomology of the Grassmannian, Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, pp. 357–422. MR 1358625
Bibliographic Information
- Konstanze Rietsch
- Affiliation: Mathematical Institute, University of Oxford, Oxford, United Kingdom
- Address at time of publication: King’s College, University of London, London, United Kingdom
- Email: rietsch@maths.ox.ac.uk, rietsch@mth.kcl.ac.uk
- Received by editor(s): December 10, 2001
- Received by editor(s) in revised form: September 14, 2002
- Published electronically: November 29, 2002
- Additional Notes: During a large part of this work the author was an EPSRC postdoctoral fellow (GR/M09506/01) and Fellow of Newnham College in Cambridge. The article was completed while supported by the Violette and Samuel Glasstone Foundation at Oxford.
- © Copyright 2002 American Mathematical Society
- Journal: J. Amer. Math. Soc. 16 (2003), 363-392
- MSC (2000): Primary 20G20, 15A48, 14N35, 14N15
- DOI: https://doi.org/10.1090/S0894-0347-02-00412-5
- MathSciNet review: 1949164