## Gromov-Witten invariants on Grassmannians

HTML articles powered by AMS MathViewer

- by Anders Skovsted Buch, Andrew Kresch and Harry Tamvakis
- J. Amer. Math. Soc.
**16**(2003), 901-915 - DOI: https://doi.org/10.1090/S0894-0347-03-00429-6
- Published electronically: May 1, 2003
- PDF | Request permission

## Abstract:

We prove that any three-point genus zero Gromov-Witten invariant on a type $A$ Grassmannian is equal to a classical intersection number on a two-step flag variety. We also give symplectic and orthogonal analogues of this result; in these cases the two-step flag variety is replaced by a sub-maximal isotropic Grassmannian. Our theorems are applied, in type $A$, to formulate a conjectural quantum Littlewood-Richardson rule, and in the other classical Lie types, to obtain new proofs of the main structure theorems for the quantum cohomology of Lagrangian and orthogonal Grassmannians.## References

- L. Bégin, C. Cummins, and P. Mathieu,
*Generating-function method for fusion rules*, J. Math. Phys.**41**(2000), no. 11, 7640–7674. MR**1788596**, DOI 10.1063/1.1286512 - L. Bégin, A. N. Kirillov, P. Mathieu, and M. A. Walton,
*Berenstein-Zelevinsky triangles, elementary couplings, and fusion rules*, Lett. Math. Phys.**28**(1993), no. 4, 257–268. MR**1237577**, DOI 10.1007/BF00761494 - L. Bégin, P. Mathieu, and M. A. Walton,
*$\widehat {\mathrm {su}}(3)_k$ fusion coefficients*, Modern Phys. Lett. A**7**(1992), no. 35, 3255–3265. MR**1191281**, DOI 10.1142/S0217732392002640 - Nantel Bergeron and Frank Sottile,
*Schubert polynomials, the Bruhat order, and the geometry of flag manifolds*, Duke Math. J.**95**(1998), no. 2, 373–423. MR**1652021**, DOI 10.1215/S0012-7094-98-09511-4 - Aaron Bertram,
*Quantum Schubert calculus*, Adv. Math.**128**(1997), no. 2, 289–305. MR**1454400**, DOI 10.1006/aima.1997.1627 - Aaron Bertram, Ionuţ Ciocan-Fontanine, and William Fulton,
*Quantum multiplication of Schur polynomials*, J. Algebra**219**(1999), no. 2, 728–746. MR**1706853**, DOI 10.1006/jabr.1999.7960
[Bu1]Buch A. S. Buch : - Sergey Fomin and Anatol N. Kirillov,
*Quadratic algebras, Dunkl elements, and Schubert calculus*, Advances in geometry, Progr. Math., vol. 172, Birkhäuser Boston, Boston, MA, 1999, pp. 147–182. MR**1667680** - William Fulton,
*Young tableaux*, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR**1464693** - W. Fulton and R. Pandharipande,
*Notes on stable maps and quantum cohomology*, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR**1492534**, DOI 10.1090/pspum/062.2/1492534 - Howard Hiller and Brian Boe,
*Pieri formula for $\textrm {SO}_{2n+1}/\textrm {U}_n$ and $\textrm {Sp}_n/\textrm {U}_n$*, Adv. in Math.**62**(1986), no. 1, 49–67. MR**859253**, DOI 10.1016/0001-8708(86)90087-3
[K]Kn A. Knutson : Private communication.
[KTW]KTW A. Knutson, T. Tao and C. Woodward : - Piotr Pragacz,
*Algebro-geometric applications of Schur $S$- and $Q$-polynomials*, Topics in invariant theory (Paris, 1989/1990) Lecture Notes in Math., vol. 1478, Springer, Berlin, 1991, pp. 130–191. MR**1180989**, DOI 10.1007/BFb0083503 - P. Pragacz and J. Ratajski,
*Formulas for Lagrangian and orthogonal degeneracy loci; $\~Q$-polynomial approach*, Compositio Math.**107**(1997), no. 1, 11–87. MR**1457343**, DOI 10.1023/A:1000182205320 - Bernd Siebert and Gang Tian,
*On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator*, Asian J. Math.**1**(1997), no. 4, 679–695. MR**1621570**, DOI 10.4310/AJM.1997.v1.n4.a2 - Frank Sottile,
*Pieri’s formula for flag manifolds and Schubert polynomials*, Ann. Inst. Fourier (Grenoble)**46**(1996), no. 1, 89–110 (English, with English and French summaries). MR**1385512**
[Tu]Tu G. Tudose :

*Quantum cohomology of Grassmannians*, Compositio Math., to appear. [Bu2]qmonk A. S. Buch :

*A direct proof of the quantum version of Monk’s formula*, Proc. Amer. Math. Soc., to appear. [BKT1]BKT A. S. Buch, A. Kresch, and H. Tamvakis :

*Grassmannians, two-step flags, and puzzles*, in preparation. [BKT2]BKT2 A. S. Buch, A. Kresch, and H. Tamvakis :

*Quantum Pieri rules for isotropic Grassmannians*, in preparation.

*The honeycomb model of $GL(n)$ tensor products II: Puzzles determine facets of the Littlewood-Richardson cone*, J. Amer. Math. Soc., to appear. [KT1]KTlg A. Kresch and H. Tamvakis :

*Quantum cohomology of the Lagrangian Grassmannian*, J. Algebraic Geom., to appear. [KT2]KTorth A. Kresch and H. Tamvakis :

*Quantum cohomology of orthogonal Grassmannians*, Compositio Math., to appear.

*On the combinatorics of $sl(n)$-fusion coefficients*, preprint (2001). [Y]Y A. Yong :

*Degree bounds in quantum Schubert calculus*, Proc. Amer. Math. Soc., to appear.

## Bibliographic Information

**Anders Skovsted Buch**- Affiliation: Matematisk Institut, Aarhus Universitet, Ny Munkegade, 8000 Århus C, Denmark
- MR Author ID: 607314
- Email: abuch@imf.au.dk
**Andrew Kresch**- Affiliation: Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104-6395
- MR Author ID: 644754
- Email: kresch@math.upenn.edu
**Harry Tamvakis**- Affiliation: Department of Mathematics, Brandeis University - MS 050, P. O. Box 9110, Waltham, Massachusetts 02454-9110
- Email: harryt@brandeis.edu
- Received by editor(s): July 18, 2002
- Published electronically: May 1, 2003
- Additional Notes: The authors were supported in part by NSF Grant DMS-0070479 (Buch), an NSF Postdoctoral Research Fellowship (Kresch), and NSF Grant DMS-0296023 (Tamvakis).
- © Copyright 2003 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**16**(2003), 901-915 - MSC (2000): Primary 14N35; Secondary 14M15, 14N15, 05E15
- DOI: https://doi.org/10.1090/S0894-0347-03-00429-6
- MathSciNet review: 1992829