The homotopy theory of fusion systems
HTML articles powered by AMS MathViewer
- by Carles Broto, Ran Levi and Bob Oliver;
- J. Amer. Math. Soc. 16 (2003), 779-856
- DOI: https://doi.org/10.1090/S0894-0347-03-00434-X
- Published electronically: July 21, 2003
- HTML | PDF | Request permission
Abstract:
We define and characterize a class of $p$-complete spaces $X$ which have many of the same properties as the $p$-completions of classifying spaces of finite groups. For example, each such $X$ has a Sylow subgroup $BS\longrightarrow X$, maps $BQ\longrightarrow X$ for a $p$-group $Q$ are described via homomorphisms $Q\longrightarrow S$, and $H^*(X;\mathbb {F}_p)$ is isomorphic to a certain ring of “stable elements” in $H^*(BS;\mathbb {F}_p)$. These spaces arise as the “classifying spaces” of certain algebraic objects which we call “$p$-local finite groups”. Such an object consists of a system of fusion data in $S$, as formalized by L. Puig, extended by some extra information carried in a category which allows rigidification of the fusion data.References
- J. L. Alperin, Local representation theory, Cambridge Studies in Advanced Mathematics, vol. 11, Cambridge University Press, Cambridge, 1986. Modular representations as an introduction to the local representation theory of finite groups. MR 860771, DOI 10.1017/CBO9780511623592
- J. Alperin and Michel Broué, Local methods in block theory, Ann. of Math. (2) 110 (1979), no. 1, 143–157. MR 541333, DOI 10.2307/1971248
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 242802
- David J. Benson, Cohomology of sporadic groups, finite loop spaces, and the Dickson invariants, Geometry and cohomology in group theory (Durham, 1994) London Math. Soc. Lecture Note Ser., vol. 252, Cambridge Univ. Press, Cambridge, 1998, pp. 10–23. MR 1709949, DOI 10.1017/CBO9780511666131.003
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 365573
- Glen E. Bredon, Sheaf theory, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR 221500 [BrK]BrKi C. Broto & N. Kitchloo, Classifying spaces of Kac-Moody groups, Math. Z. 240 (2002), 621–649.
- Carles Broto and Ran Levi, On spaces of self-homotopy equivalences of $p$-completed classifying spaces of finite groups and homotopy group extensions, Topology 41 (2002), no. 2, 229–255. MR 1876889, DOI 10.1016/S0040-9383(00)00031-8 [BLO]BLO C. Broto, R. Levi, & B. Oliver, Homotopy equivalences of $p$-completed classifying spaces of finite groups, Invent. Math. 151 (2003), 611–664. [BrM]BrM C. Broto & J. Møller, Homotopy finite Chevalley versions of $p$-compact groups, preprint, 2003.
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- W. G. Dwyer, The centralizer decomposition of $BG$, Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guíxols, 1994) Progr. Math., vol. 136, Birkhäuser, Basel, 1996, pp. 167–184. MR 1397728
- W. G. Dwyer and D. M. Kan, A classification theorem for diagrams of simplicial sets, Topology 23 (1984), no. 2, 139–155. MR 744846, DOI 10.1016/0040-9383(84)90035-1
- W. G. Dwyer and D. M. Kan, Centric maps and realization of diagrams in the homotopy category, Proc. Amer. Math. Soc. 114 (1992), no. 2, 575–584. MR 1070515, DOI 10.1090/S0002-9939-1992-1070515-X
- W. G. Dwyer and C. W. Wilkerson, A cohomology decomposition theorem, Topology 31 (1992), no. 2, 433–443. MR 1167181, DOI 10.1016/0040-9383(92)90032-D
- Leonard Evens and Stewart Priddy, The ring of universally stable elements, Quart. J. Math. Oxford Ser. (2) 40 (1989), no. 160, 399–407. MR 1033215, DOI 10.1093/qmath/40.4.399
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 210125
- Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR 1711612, DOI 10.1007/978-3-0348-8707-6
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 231903
- Daniel Gorenstein and Richard Lyons, The local structure of finite groups of characteristic $2$ type, Mem. Amer. Math. Soc. 42 (1983), no. 276, vii+731. MR 690900, DOI 10.1090/memo/0276
- Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups. Number 3. Part I. Chapter A, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1998. Almost simple $K$-groups. MR 1490581, DOI 10.1090/surv/040.3
- Jesper Grodal, Higher limits via subgroup complexes, Ann. of Math. (2) 155 (2002), no. 2, 405–457. MR 1906592, DOI 10.2307/3062122
- Georges Hoff, Cohomologies et extensions de categories, Math. Scand. 74 (1994), no. 2, 191–207 (French). MR 1298361, DOI 10.7146/math.scand.a-12489
- J. Hollender and R. M. Vogt, Modules of topological spaces, applications to homotopy limits and $E_\infty$ structures, Arch. Math. (Basel) 59 (1992), no. 2, 115–129. MR 1170635, DOI 10.1007/BF01190675
- Stefan Jackowski and James McClure, Homotopy decomposition of classifying spaces via elementary abelian subgroups, Topology 31 (1992), no. 1, 113–132. MR 1153240, DOI 10.1016/0040-9383(92)90065-P
- Stefan Jackowski, James McClure, and Bob Oliver, Homotopy classification of self-maps of $BG$ via $G$-actions. I, Ann. of Math. (2) 135 (1992), no. 1, 183–226. MR 1147962, DOI 10.2307/2946568
- G. E. Carlsson, R. L. Cohen, W. C. Hsiang, and J. D. S. Jones (eds.), Algebraic topology and its applications, Mathematical Sciences Research Institute Publications, vol. 27, Springer-Verlag, New York, 1994. MR 1268184, DOI 10.1007/978-1-4613-9526-3
- Jean Lannes, Sur les espaces fonctionnels dont la source est le classifiant d’un $p$-groupe abélien élémentaire, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 135–244 (French). With an appendix by Michel Zisman. MR 1179079
- Jean Lannes and Lionel Schwartz, Sur la structure des $A$-modules instables injectifs, Topology 28 (1989), no. 2, 153–169 (French). MR 1003580, DOI 10.1016/0040-9383(89)90018-9
- Martin W. Liebeck, Jan Saxl, and Gary M. Seitz, Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. London Math. Soc. (3) 65 (1992), no. 2, 297–325. MR 1168190, DOI 10.1112/plms/s3-65.2.297 [LW]LW M. Linckelmann & P. Webb, unpublished notes.
- Bob Oliver, Higher limits via Steinberg representations, Comm. Algebra 22 (1994), no. 4, 1381–1393. MR 1261265, DOI 10.1080/00927879408824911 [Pu]Puig L. Puig, Unpublished notes. [Pu2]Puig2 L. Puig, Full Frobenius systems and their localizing categories, preprint.
- Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549–572; ibid. (2) 94 (1971), 573–602. MR 298694, DOI 10.2307/1970770
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin-New York, 1973, pp. 85–147. MR 338129
- Graeme Segal, Categories and cohomology theories, Topology 13 (1974), 293–312. MR 353298, DOI 10.1016/0040-9383(74)90022-6
- Ronald Solomon, Finite groups with Sylow $2$-subgroups of type $3$, J. Algebra 28 (1974), 182–198. MR 344338, DOI 10.1016/0021-8693(74)90031-3
- Richard G. Swan, The nontriviality of the restriction map in the cohomology of groups, Proc. Amer. Math. Soc. 11 (1960), 885–887. MR 124050, DOI 10.1090/S0002-9939-1960-0124050-2
Bibliographic Information
- Carles Broto
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, E–08193 Bellaterra, Spain
- MR Author ID: 42005
- Email: broto@mat.uab.es
- Ran Levi
- Affiliation: Department of Mathematical Sciences, University of Aberdeen, Meston Building 339, Aberdeen AB24 3UE, United Kingdom
- Email: ran@maths.abdn.ac.uk
- Bob Oliver
- Affiliation: LAGA, Institut Galilée, Av. J-B Clément, 93430 Villetaneuse, France
- MR Author ID: 191965
- Email: bob@math.univ-paris13.fr
- Received by editor(s): August 3, 2001
- Published electronically: July 21, 2003
- Additional Notes: The first author is partially supported by MCYT grant BFM2001–2035
The second author is partially supported by EPSRC grant GR/M7831.
The third author is partially supported by UMR 7539 of the CNRS
All of the authors have been supported by EU grant HPRN-CT-1999-00119. - © Copyright 2003 American Mathematical Society
- Journal: J. Amer. Math. Soc. 16 (2003), 779-856
- MSC (2000): Primary 55R35; Secondary 55R40, 20D20
- DOI: https://doi.org/10.1090/S0894-0347-03-00434-X
- MathSciNet review: 1992826