Wiener’s lemma for twisted convolution and Gabor frames
Authors:
Karlheinz Gröchenig and Michael Leinert
Journal:
J. Amer. Math. Soc. 17 (2004), 1-18
MSC (2000):
Primary 22D25, 42C15; Secondary 22E25, 47B38, 47C15
DOI:
https://doi.org/10.1090/S0894-0347-03-00444-2
Published electronically:
September 26, 2003
MathSciNet review:
2015328
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove non-commutative versions of Wiener’s Lemma on absolutely convergent Fourier series (a) for the case of twisted convolution and (b) for rotation algebras. As an application we solve some open problems about Gabor frames, among them the problem of Feichtinger and Janssen that is known in the literature as the “irrational case”.
- Bruce A. Barnes, When is the spectrum of a convolution operator on $L^p$ independent of $p$?, Proc. Edinburgh Math. Soc. (2) 33 (1990), no. 2, 327–332. MR 1057760, DOI https://doi.org/10.1017/S0013091500018241
- Helmut Bölcskei and Augustus J. E. M. Janssen, Gabor frames, unimodularity, and window decay, J. Fourier Anal. Appl. 6 (2000), no. 3, 255–276. MR 1755143, DOI https://doi.org/10.1007/BF02511155
- Ingrid Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), no. 5, 961–1005. MR 1066587, DOI https://doi.org/10.1109/18.57199
- Ingrid Daubechies, H. J. Landau, and Zeph Landau, Gabor time-frequency lattices and the Wexler-Raz identity, J. Fourier Anal. Appl. 1 (1995), no. 4, 437–478. MR 1350701, DOI https://doi.org/10.1007/s00041-001-4018-3
- Kenneth R. Davidson, $C^*$-algebras by example, Fields Institute Monographs, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1402012
- George A. Elliott and David E. Evans, The structure of the irrational rotation $C^*$-algebra, Ann. of Math. (2) 138 (1993), no. 3, 477–501. MR 1247990, DOI https://doi.org/10.2307/2946553
- Hans G. Feichtinger, On a new Segal algebra, Monatsh. Math. 92 (1981), no. 4, 269–289. MR 643206, DOI https://doi.org/10.1007/BF01320058
- Hans G. Feichtinger and K. H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. II, Monatsh. Math. 108 (1989), no. 2-3, 129–148. MR 1026614, DOI https://doi.org/10.1007/BF01308667
- Hans G. Feichtinger and K. Gröchenig, Gabor frames and time-frequency analysis of distributions, J. Funct. Anal. 146 (1997), no. 2, 464–495. MR 1452000, DOI https://doi.org/10.1006/jfan.1996.3078
- Hans G. Feichtinger and Thomas Strohmer (eds.), Gabor analysis and algorithms, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 1998. Theory and applications. MR 1601119
- Gerald B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR 983366
- I. Gelfand, D. Raikov, and G. Shilov, Commutative normed rings, Chelsea Publishing Co., New York, 1964. Translated from the Russian, with a supplementary chapter. MR 0205105
- K. Gröchenig, An uncertainty principle related to the Poisson summation formula, Studia Math. 121 (1996), no. 1, 87–104. MR 1414896, DOI https://doi.org/10.4064/sm-121-1-87-104
- Karlheinz Gröchenig, Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1843717
- Roger Howe, On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc. (N.S.) 3 (1980), no. 2, 821–843. MR 578375, DOI https://doi.org/10.1090/S0273-0979-1980-14825-9
- A. Hulanicki, On the spectrum of convolution operators on groups with polynomial growth, Invent. Math. 17 (1972), 135–142. MR 323951, DOI https://doi.org/10.1007/BF01418936
- A. J. E. M. Janssen, Duality and biorthogonality for Weyl-Heisenberg frames, J. Fourier Anal. Appl. 1 (1995), no. 4, 403–436. MR 1350700, DOI https://doi.org/10.1007/s00041-001-4017-4 janssen95sp A. J. E. M. Janssen. On rationally oversampled Weyl-Heisenberg frames. Signal Proc., 47:239–245, 1995.
- H. Leptin, The structure of $L^{1}(G)$ for locally compact groups, Operator algebras and group representations, Vol. II (Neptun, 1980) Monogr. Stud. Math., vol. 18, Pitman, Boston, MA, 1984, pp. 48–61. MR 733302
- V. Losert, On the structure of groups with polynomial growth. II, J. London Math. Soc. (2) 63 (2001), no. 3, 640–654. MR 1825980, DOI https://doi.org/10.1017/S0024610701001983
- Jean Ludwig, A class of symmetric and a class of Wiener group algebras, J. Functional Analysis 31 (1979), no. 2, 187–194. MR 525950, DOI https://doi.org/10.1016/0022-1236%2879%2990060-0
- M. A. Naĭmark, Normed algebras, 3rd ed., Wolters-Noordhoff Publishing, Groningen, 1972. Translated from the second Russian edition by Leo F. Boron; Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics. MR 0438123
- Alan L. T. Paterson, Amenability, Mathematical Surveys and Monographs, vol. 29, American Mathematical Society, Providence, RI, 1988. MR 961261
- T. Pytlik, On the spectral radius of elements in group algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 899–902 (English, with Russian summary). MR 328476
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- Marc A. Rieffel, von Neumann algebras associated with pairs of lattices in Lie groups, Math. Ann. 257 (1981), no. 4, 403–418. MR 639575, DOI https://doi.org/10.1007/BF01465863
- Marc A. Rieffel, Projective modules over higher-dimensional noncommutative tori, Canad. J. Math. 40 (1988), no. 2, 257–338. MR 941652, DOI https://doi.org/10.4153/CJM-1988-012-9
- Amos Ron and Zuowei Shen, Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbf R^d)$, Duke Math. J. 89 (1997), no. 2, 237–282. MR 1460623, DOI https://doi.org/10.1215/S0012-7094-97-08913-4
- Thomas Strohmer, Approximation of dual Gabor frames, window decay, and wireless communications, Appl. Comput. Harmon. Anal. 11 (2001), no. 2, 243–262. MR 1848305, DOI https://doi.org/10.1006/acha.2001.0357
- Richard Tolimieri and Richard S. Orr, Poisson summation, the ambiguity function, and the theory of Weyl-Heisenberg frames, J. Fourier Anal. Appl. 1 (1995), no. 3, 233–247. MR 1353539, DOI https://doi.org/10.1007/s00041-001-4011-x
- David F. Walnut, Continuity properties of the Gabor frame operator, J. Math. Anal. Appl. 165 (1992), no. 2, 479–504. MR 1155734, DOI https://doi.org/10.1016/0022-247X%2892%2990053-G
- Meir Zibulski and Yehoshua Y. Zeevi, Analysis of multiwindow Gabor-type schemes by frame methods, Appl. Comput. Harmon. Anal. 4 (1997), no. 2, 188–221. MR 1448221, DOI https://doi.org/10.1006/acha.1997.0209
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 22D25, 42C15, 22E25, 47B38, 47C15
Retrieve articles in all journals with MSC (2000): 22D25, 42C15, 22E25, 47B38, 47C15
Additional Information
Karlheinz Gröchenig
Affiliation:
Department of Mathematics, The University of Connecticut, Storrs, CT 06269-3009
Email:
GROCH@MATH.UCONN.EDU
Michael Leinert
Affiliation:
Institut für Angewandte Mathematik, Fakultät für Mathematik, Im Neuenheimer Feld 288, D-69120 Heidelberg, Germany
Email:
LEINERT@MATH.UNI-HEIDELBERG.DE
Keywords:
Twisted convolution,
Heisenberg group,
Wiener’s Lemma,
symmetric group algebra,
Gabor frame,
modulation space,
window design,
invertibility of operators
Received by editor(s):
July 1, 2001
Published electronically:
September 26, 2003
Additional Notes:
The first author acknowledges partial support by the Austrian Science Foundation (FWF) under project no. P14485-MAT
Article copyright:
© Copyright 2003
American Mathematical Society