Almost optimal local well-posedness for the (3+1)-dimensional Maxwell–Klein–Gordon equations
HTML articles powered by AMS MathViewer
- by Matei Machedon and Jacob Sterbenz
- J. Amer. Math. Soc. 17 (2004), 297-359
- DOI: https://doi.org/10.1090/S0894-0347-03-00445-4
- Published electronically: November 13, 2003
- PDF | Request permission
Abstract:
We prove that the evolution problem for the Maxwell–Klein– Gordon system is locally well posed when the initial data belong to the Sobolev space $H^{\frac {1}{2} + \epsilon }$ for any $\epsilon > 0$. This is in spite of a complete failure of the standard model equations in the range $\frac {1}{2} < s < \frac {3}{4}$. The device that enables us to obtain inductive estimates is a new null structure which involves cancellations between the elliptic and hyperbolic terms in the full equations.References
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- D. Christodoulou and S. Klainerman, Asymptotic properties of linear field equations in Minkowski space, Comm. Pure Appl. Math. 43 (1990), no. 2, 137–199. MR 1038141, DOI 10.1002/cpa.3160430202
- Scipio Cuccagna, On the local existence for the Maxwell-Klein-Gordon system in $\textbf {R}^{3+1}$, Comm. Partial Differential Equations 24 (1999), no. 5-6, 851–867. MR 1680913, DOI 10.1080/03605309908821449
- Douglas M. Eardley and Vincent Moncrief, The global existence of Yang-Mills-Higgs fields in $4$-dimensional Minkowski space. I. Local existence and smoothness properties, Comm. Math. Phys. 83 (1982), no. 2, 171–191. MR 649158
- Douglas M. Eardley and Vincent Moncrief, The global existence of Yang-Mills-Higgs fields in $4$-dimensional Minkowski space. I. Local existence and smoothness properties, Comm. Math. Phys. 83 (1982), no. 2, 171–191. MR 649158
- Damiano Foschi and Sergiu Klainerman, Bilinear space-time estimates for homogeneous wave equations, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 2, 211–274 (English, with English and French summaries). MR 1755116, DOI 10.1016/S0012-9593(00)00109-9
- Markus Keel and Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955–980. MR 1646048
- Markus Keel, Terence Tao, Global well-posedness of the Maxwell-Klein-Gordon Equation below the energy norm. Preprint.
- Carlos E. Kenig, Gustavo Ponce, and Luis Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1993), no. 1, 1–21. MR 1230283, DOI 10.1215/S0012-7094-93-07101-3
- Joachim Krieger, Global regularity of wave maps from $R^ {3+1}$ to surfaces. Comm. Math. Phys. 238 (2003), no. 1-2, 333–366.
- Joachim Krieger, Global regularity of wave maps from $R^ {2+1}$ to the hyperbolic plane. Preprint.
- Sergiu Klainerman, Matei Machedon, Space-time estimates for null forms and the local existence theorem, Comm Pure Appl. Math. 46 (1993), 1221–1268.
- Sergiu Klainerman, Geometric and Fourier Methods in Nonlinear Wave Equations, available at http://www.math.princeton.edu/~seri/homepage/seri.htm.
- S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J. 74 (1994), no. 1, 19–44. MR 1271462, DOI 10.1215/S0012-7094-94-07402-4
- S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, Duke Math. J. 81 (1995), no. 1, 99–133 (1996). A celebration of John F. Nash, Jr. MR 1381973, DOI 10.1215/S0012-7094-95-08109-5
- Sergiu Klainerman and Matei Machedon, Estimates for null forms and the spaces $H_{s,\delta }$, Internat. Math. Res. Notices 17 (1996), 853–865. MR 1420552, DOI 10.1155/S1073792896000529
- Sergiu Klainerman and Matei Machedon, Remark on Strichartz-type inequalities, Internat. Math. Res. Notices 5 (1996), 201–220. With appendices by Jean Bourgain and Daniel Tataru. MR 1383755, DOI 10.1155/S1073792896000153
- Sergiu Klainerman and Matei Machedon, On the optimal local regularity for gauge field theories, Differential Integral Equations 10 (1997), no. 6, 1019–1030. MR 1608017
- Sergiu Klainerman and Igor Rodnianski, On the global regularity of wave maps in the critical Sobolev norm, Internat. Math. Res. Notices 13 (2001), 655–677. MR 1843256, DOI 10.1155/S1073792801000344
- Sergiu Klainerman, Igor Rodnianski, Improved local well-posedness for quasilinear wave equations in dimension three. Duke Math. J. 117 (2003), no. 1, 1–124.
- Sergiu Klainerman, Igor Rodnianski, Rough Solutions to the Einstein Vacuum Equations. Preprint.
- Sergiu Klainerman, Igor Rodnianski, Terence Tao, A physical space approach to wave equation bilinear estimates. Dedicated to the memory of Thomas H. Wolff. J. Anal. Math. 87 (2002), 299–336.
- Sergiu Klainerman and Daniel Tataru, On the optimal local regularity for Yang-Mills equations in $\textbf {R}^{4+1}$, J. Amer. Math. Soc. 12 (1999), no. 1, 93–116. MR 1626261, DOI 10.1090/S0894-0347-99-00282-9
- Hans Lindblad, A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations, Duke Math. J. 72 (1993), no. 2, 503–539. MR 1248683, DOI 10.1215/S0012-7094-93-07219-5
- Jalal Shatah, Michael Struwe, The Cauchy problem for wave maps. Internat. Math. Res. Notices 2002, no. 11, 555–571.
- Wei-Tong Shu, Global existence of Maxwell-Higgs fields, Nonlinear hyperbolic equations and field theory (Lake Como, 1990) Pitman Res. Notes Math. Ser., vol. 253, Longman Sci. Tech., Harlow, 1992, pp. 214–227. MR 1175213
- Igor Rodnianski, Terence Tao, Global regularity for the Maxwell–Klein–Gordon equations with small critical Sobolev norm in high dimensions. Preprint.
- Jacob Sterbenz, Global regularity for generic non-linear wave equations in high dimensions I. Critical Besov space in $(6+1)$-D. University of Maryland thesis.
- Terence Tao, Low regularity semi-linear wave equations, Comm. Partial Differential Equations 24 (1999), no. 3-4, 599–629. MR 1683051, DOI 10.1080/03605309908821435
- Terence Tao, Global regularity of wave maps. I. Small critical Sobolev norm in high dimension, Internat. Math. Res. Notices 6 (2001), 299–328. MR 1820329, DOI 10.1155/S1073792801000150
- Terence Tao, Global regularity of wave maps. II. Small energy in two dimensions, Comm. Math. Phys. 224 (2001), no. 2, 443–544. MR 1869874, DOI 10.1007/PL00005588
- Daniel Tataru, Local and global results for wave maps. I, Comm. Partial Differential Equations 23 (1998), no. 9-10, 1781–1793. MR 1641721, DOI 10.1080/03605309808821400
- Daniel Tataru, On the equation $\square u=|\nabla u|^2$ in $5+1$ dimensions, Math. Res. Lett. 6 (1999), no. 5-6, 469–485. MR 1739207, DOI 10.4310/MRL.1999.v6.n5.a1
- Daniel Tataru, On global existence and scattering for the wave maps equation, Amer. J. Math. 123 (2001), no. 1, 37–77. MR 1827277
- Daniel Tataru, Rough solutions for the Wave-Maps equation. Preprint.
- Hart Smith, Daniel Tataru, Sharp local well-posedness results for the nonlinear wave equation. Preprint.
Bibliographic Information
- Matei Machedon
- Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
- MR Author ID: 117610
- Email: mxm@math.umd.edu
- Jacob Sterbenz
- Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
- Address at time of publication: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- MR Author ID: 733516
- Email: jks@math.umd.edu, sterbenz@math.princeton.edu
- Received by editor(s): October 16, 2002
- Published electronically: November 13, 2003
- Additional Notes: Both authors were supported by NSF grant DMS-0100406.
- © Copyright 2003 American Mathematical Society
- Journal: J. Amer. Math. Soc. 17 (2004), 297-359
- MSC (2000): Primary 35Q60, 35L70
- DOI: https://doi.org/10.1090/S0894-0347-03-00445-4
- MathSciNet review: 2051613