Plurisubharmonic domination
HTML articles powered by AMS MathViewer
- by László Lempert;
- J. Amer. Math. Soc. 17 (2004), 361-372
- DOI: https://doi.org/10.1090/S0894-0347-03-00448-X
- Published electronically: November 25, 2003
- PDF | Request permission
Abstract:
For a large class of separable Banach spaces $X$ we prove the following. Given a pseudoconvex open $\Omega \subset X$ and $u:\Omega \to \mathbb {R}$ that is locally bounded above, there is a plurisubharmonic $v:\Omega \to \mathbb {R}$ such that $u\le v$. We also discuss applications of this result.References
- [A]A A. Arroud, Plongement des variétés analytiques complexes de dimension infinie, Thesis, Lille (1983).
- Errett Bishop, Mappings of partially analytic spaces, Amer. J. Math. 83 (1961), 209–242. MR 123732, DOI 10.2307/2372953
- Robert Bonic and John Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877–898. MR 198492
- Seán Dineen, Bounding subsets of a Banach space, Math. Ann. 192 (1971), 61–70. MR 303290, DOI 10.1007/BF02052733
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
- Bengt Josefson, Bounding subsets of $l^{\infty }(A)$, J. Math. Pures Appl. (9) 57 (1978), no. 4, 397–421. MR 524627 [J2]J2 B. Josefson, Approximations of holomorphic functions in certain Banach spaces, manuscript (2000).
- László Lempert, The Dolbeault complex in infinite dimensions. I, J. Amer. Math. Soc. 11 (1998), no. 3, 485–520. MR 1603858, DOI 10.1090/S0894-0347-98-00266-5
- László Lempert, Approximation of holomorphic functions of infinitely many variables. II, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 2, 423–442 (English, with English and French summaries). MR 1775356, DOI 10.5802/aif.1760
- László Lempert, The Dolbeault complex in infinite dimensions. III. Sheaf cohomology in Banach spaces, Invent. Math. 142 (2000), no. 3, 579–603. MR 1804162, DOI 10.1007/PL00005794 [L4]L4 L. Lempert, Vanishing cohomology for holomorphic vector bundles in a Banach setting, Asian J. Math. to appear. [Ma]Ma P. Mazet, Letter of July 1998.
- Jorge Mujica, Complex analysis in Banach spaces, North-Holland Mathematics Studies, vol. 120, North-Holland Publishing Co., Amsterdam, 1986. Holomorphic functions and domains of holomorphy in finite and infinite dimensions; Notas de Matemática [Mathematical Notes], 107. MR 842435
- Raghavan Narasimhan, Imbedding of holomorphically complete complex spaces, Amer. J. Math. 82 (1960), 917–934. MR 148942, DOI 10.2307/2372949
- Philippe Noverraz, Pseudo-convexité, convexité polynomiale et domaines d’holomorphie en dimension infinie, North-Holland Mathematics Studies, No. 3, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973 (French). Notas de Matemática [Mathematical Notes], No. 48. MR 358348
- Imre Patyi, On the $\overline \partial$-equation in a Banach space, Bull. Soc. Math. France 128 (2000), no. 3, 391–406 (English, with English and French summaries). MR 1792475 [R]R R. Remmert, Habilitationsschrift, Münster (1958).
- Józef Marcinkiewicz and Antoni Zygmund, Sur la dérivée seconde généralisée, Bull. Sém. Math. Univ. Wilno 2 (1939), 35–40 (French). MR 45
- Yum Tong Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976/77), no. 1, 89–100. MR 435447, DOI 10.1007/BF01390170
Bibliographic Information
- László Lempert
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- MR Author ID: 112435
- Email: lempert@math.purdue.edu
- Received by editor(s): March 6, 2003
- Published electronically: November 25, 2003
- Additional Notes: Research partially supported by an NSF grant
- © Copyright 2003 American Mathematical Society
- Journal: J. Amer. Math. Soc. 17 (2004), 361-372
- MSC (2000): Primary 32Txx, 32U05, 46G20
- DOI: https://doi.org/10.1090/S0894-0347-03-00448-X
- MathSciNet review: 2051614