## Plurisubharmonic domination

HTML articles powered by AMS MathViewer

- by László Lempert PDF
- J. Amer. Math. Soc.
**17**(2004), 361-372 Request permission

## Abstract:

For a large class of separable Banach spaces $X$ we prove the following. Given a pseudoconvex open $\Omega \subset X$ and $u:\Omega \to \mathbb {R}$ that is locally bounded above, there is a plurisubharmonic $v:\Omega \to \mathbb {R}$ such that $u\le v$. We also discuss applications of this result.## References

- [A]A A. Arroud,
- Errett Bishop,
*Mappings of partially analytic spaces*, Amer. J. Math.**83**(1961), 209–242. MR**123732**, DOI 10.2307/2372953 - Robert Bonic and John Frampton,
*Smooth functions on Banach manifolds*, J. Math. Mech.**15**(1966), 877–898. MR**0198492** - Seán Dineen,
*Bounding subsets of a Banach space*, Math. Ann.**192**(1971), 61–70. MR**303290**, DOI 10.1007/BF02052733 - Lars Hörmander,
*An introduction to complex analysis in several variables*, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR**1045639** - Bengt Josefson,
*Bounding subsets of $l^{\infty }(A)$*, J. Math. Pures Appl. (9)**57**(1978), no. 4, 397–421. MR**524627**
[J2]J2 B. Josefson, - László Lempert,
*The Dolbeault complex in infinite dimensions. I*, J. Amer. Math. Soc.**11**(1998), no. 3, 485–520. MR**1603858**, DOI 10.1090/S0894-0347-98-00266-5 - László Lempert,
*Approximation of holomorphic functions of infinitely many variables. II*, Ann. Inst. Fourier (Grenoble)**50**(2000), no. 2, 423–442 (English, with English and French summaries). MR**1775356** - László Lempert,
*The Dolbeault complex in infinite dimensions. III. Sheaf cohomology in Banach spaces*, Invent. Math.**142**(2000), no. 3, 579–603. MR**1804162**, DOI 10.1007/PL00005794
[L4]L4 L. Lempert, - Jorge Mujica,
*Complex analysis in Banach spaces*, North-Holland Mathematics Studies, vol. 120, North-Holland Publishing Co., Amsterdam, 1986. Holomorphic functions and domains of holomorphy in finite and infinite dimensions; Notas de Matemática [Mathematical Notes], 107. MR**842435** - Raghavan Narasimhan,
*Imbedding of holomorphically complete complex spaces*, Amer. J. Math.**82**(1960), 917–934. MR**148942**, DOI 10.2307/2372949 - Philippe Noverraz,
*Pseudo-convexité, convexité polynomiale et domaines d’holomorphie en dimension infinie*, North-Holland Mathematics Studies, No. 3, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973 (French). MR**0358348** - Imre Patyi,
*On the $\overline \partial$-equation in a Banach space*, Bull. Soc. Math. France**128**(2000), no. 3, 391–406 (English, with English and French summaries). MR**1792475**
[R]R R. Remmert, - Józef Marcinkiewicz and Antoni Zygmund,
*Sur la dérivée seconde généralisée*, Bull. Sém. Math. Univ. Wilno**2**(1939), 35–40 (French). MR**45** - Yum Tong Siu,
*Every Stein subvariety admits a Stein neighborhood*, Invent. Math.**38**(1976/77), no. 1, 89–100. MR**435447**, DOI 10.1007/BF01390170

*Plongement des variétés analytiques complexes de dimension infinie*, Thesis, Lille (1983).

*Approximations of holomorphic functions in certain Banach spaces*, manuscript (2000).

*Vanishing cohomology for holomorphic vector bundles in a Banach setting*, Asian J. Math. to appear. [Ma]Ma P. Mazet,

*Letter of July 1998*.

*Habilitationsschrift*, Münster (1958).

## Additional Information

**László Lempert**- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- MR Author ID: 112435
- Email: lempert@math.purdue.edu
- Received by editor(s): March 6, 2003
- Published electronically: November 25, 2003
- Additional Notes: Research partially supported by an NSF grant
- © Copyright 2003 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**17**(2004), 361-372 - MSC (2000): Primary 32Txx, 32U05, 46G20
- DOI: https://doi.org/10.1090/S0894-0347-03-00448-X
- MathSciNet review: 2051614