Quantum groups, the loop Grassmannian, and the Springer resolution
HTML articles powered by AMS MathViewer
- by Sergey Arkhipov, Roman Bezrukavnikov and Victor Ginzburg;
- J. Amer. Math. Soc. 17 (2004), 595-678
- DOI: https://doi.org/10.1090/S0894-0347-04-00454-0
- Published electronically: April 13, 2004
- PDF | Request permission
Abstract:
We establish equivalences of the following three triangulated categories: \[ D_\text {quantum}(\mathfrak {g})\enspace \longleftrightarrow \enspace D^G_\text {coherent}(\widetilde {{\mathcal N}})\enspace \longleftrightarrow \enspace D_\text {perverse}(\mathsf {Gr}).\] Here, $D_\text {quantum}(\mathfrak {g})$ is the derived category of the principal block of finite-dimensional representations of the quantized enveloping algebra (at an odd root of unity) of a complex semisimple Lie algebra $\mathfrak {g}$; the category $D^G_\text {coherent}(\widetilde {{\mathcal N}})$ is defined in terms of coherent sheaves on the cotangent bundle on the (finite-dimensional) flag manifold for $G$ ($=$ semisimple group with Lie algebra $\mathfrak {g}$), and the category $D_\text {perverse}({\mathsf {Gr}})$ is the derived category of perverse sheaves on the Grassmannian ${\mathsf {Gr}}$ associated with the loop group $LG^\vee$, where $G^\vee$ is the Langlands dual group, smooth along the Schubert stratification. The equivalence between $D_\text {quantum}(\mathfrak {g})$ and $D^G_\text {coherent}(\widetilde {{\mathcal N}})$ is an “enhancement” of the known expression (due to Ginzburg and Kumar) for quantum group cohomology in terms of nilpotent variety. The equivalence between $D_\text {perverse}(\mathsf {Gr})$ and $D^G_\text {coherent}(\widetilde {{\mathcal N}})$ can be viewed as a “categorification” of the isomorphism between two completely different geometric realizations of the (fundamental polynomial representation of the) affine Hecke algebra that has played a key role in the proof of the Deligne-Langlands-Lusztig conjecture. One realization is in terms of locally constant functions on the flag manifold of a $p$-adic reductive group, while the other is in terms of equivariant $K$-theory of a complex (Steinberg) variety for the dual group. The composite of the two equivalences above yields an equivalence between abelian categories of quantum group representations and perverse sheaves. A similar equivalence at an even root of unity can be deduced, following the Lusztig program, from earlier deep results of Kazhdan-Lusztig and Kashiwara-Tanisaki. Our approach is independent of these results and is totally different (it does not rely on the representation theory of Kac-Moody algebras). It also gives way to proving Humphreys’ conjectures on tilting $U_q(\mathfrak {g})$-modules, as will be explained in a separate paper.References
- [AB]AB S. Arkhipov, R. Bezrukavnikov, Perverse sheaves on affine flags and Langlands dual group, arXiv:math.RT/0201073.
- Henning Haahr Andersen, Patrick Polo, and Ke Xin Wen, Representations of quantum algebras, Invent. Math. 104 (1991), no. 1, 1–59. MR 1094046, DOI 10.1007/BF01245066
- Henning Haahr Andersen, Patrick Polo, and Wen Kexin, Injective modules for quantum algebras, Amer. J. Math. 114 (1992), no. 3, 571–604. MR 1165354, DOI 10.2307/2374770
- Henning Haahr Andersen and Jan Paradowski, Fusion categories arising from semisimple Lie algebras, Comm. Math. Phys. 169 (1995), no. 3, 563–588. MR 1328736, DOI 10.1007/BF02099312
- Paul Baum, Jean-Luc Brylinski, and Robert MacPherson, Cohomologie équivariante délocalisée, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 17, 605–608 (French, with English summary). MR 791098
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966 [BD]BeDr A. Beilinson, V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigen-sheaves. Manuscript available at http://www.math.uchicago.edu/~benzvi.
- Alexander Beilinson and Victor Ginzburg, Wall-crossing functors and $\scr D$-modules, Represent. Theory 3 (1999), 1–31. MR 1659527, DOI 10.1090/S1088-4165-99-00063-1
- Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527. MR 1322847, DOI 10.1090/S0894-0347-96-00192-0
- A. A. Beĭlinson, V. A. Ginsburg, and V. V. Schechtman, Koszul duality, J. Geom. Phys. 5 (1988), no. 3, 317–350. MR 1048505, DOI 10.1016/0393-0440(88)90028-9
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Algebraic vector bundles on $\textbf {P}^{n}$ and problems of linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 66–67 (Russian). MR 509387
- Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR 1299527, DOI 10.1007/BFb0073549 [B1]B1 R. Bezrukavnikov, On tensor categories attached to cells in affine Weyl groups, arXiv:math.RT/0010089. [B2]B2 R. Bezrukavnikov, Perverse coherent sheaves (after Deligne), arXiv:math.AG/0005152.
- Roman Bezrukavnikov, Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone, Represent. Theory 7 (2003), 1–18. MR 1973365, DOI 10.1090/S1088-4165-03-00158-4 [B4]B4 R. Bezrukavnikov, Perverse sheaves on affine flags and nilpotent cone of the Langlands dual group, arXiv:math.RT/0201256.
- Roman Bezrukavnikov, Michael Finkelberg, and Vadim Schechtman, Factorizable sheaves and quantum groups, Lecture Notes in Mathematics, vol. 1691, Springer-Verlag, Berlin, 1998. MR 1641131, DOI 10.1007/BFb0092343 [BG]BG R. Bezrukavnikov, V. Ginzburg, Remarks on deformation theory, in preparation.
- Ranee Kathryn Brylinski, Limits of weight spaces, Lusztig’s $q$-analogs, and fiberings of adjoint orbits, J. Amer. Math. Soc. 2 (1989), no. 3, 517–533. MR 984511, DOI 10.1090/S0894-0347-1989-0984511-X
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- E. Cline, B. Parshall, and L. Scott, Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85–99. MR 961165
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520, DOI 10.1007/BF02684780
- Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325, DOI 10.1007/978-3-540-38955-2
- Corrado De Concini and Victor G. Kac, Representations of quantum groups at roots of $1$, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 471–506. MR 1103601
- Corrado De Concini and Volodimir Lyubashenko, Quantum function algebra at roots of $1$, Adv. Math. 108 (1994), no. 2, 205–262. MR 1296515, DOI 10.1006/aima.1994.1071
- C. De Concini, V. G. Kac, and C. Procesi, Quantum coadjoint action, J. Amer. Math. Soc. 5 (1992), no. 1, 151–189. MR 1124981, DOI 10.1090/S0894-0347-1992-1124981-X [Dr]Dr V. Drinfeld, DG quotients of DG categories, J. of Algebra 272 (2004), 643-691. [ arXiv:math.KT/0210114]. [FG]FG E. Frenkel, D. Gaitsgory, ${\mathscr D}$-modules on the affine Grassmannian and representations of affine Kac-Moody algebras. Preprint arXiv:math.AG/0303173.
- D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math. 144 (2001), no. 2, 253–280. MR 1826370, DOI 10.1007/s002220100122
- Sergei I. Gelfand and Yuri I. Manin, Methods of homological algebra, 2nd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. MR 1950475, DOI 10.1007/978-3-662-12492-5
- Victor Ginsburg, Perverse sheaves and $\textbf {C}^*$-actions, J. Amer. Math. Soc. 4 (1991), no. 3, 483–490. MR 1091465, DOI 10.1090/S0894-0347-1991-1091465-6 [G2]G2 V. Ginzburg, Perverse sheaves on a loop group and Langlands’ duality. arXiv:alg-geom/9511007.
- Victor Ginzburg and Shrawan Kumar, Cohomology of quantum groups at roots of unity, Duke Math. J. 69 (1993), no. 1, 179–198. MR 1201697, DOI 10.1215/S0012-7094-93-06909-8
- Mark Goresky, Robert Kottwitz, and Robert MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25–83. MR 1489894, DOI 10.1007/s002220050197
- Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR 899071
- Anthony Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer-Verlag, Berlin, 1995. MR 1315966, DOI 10.1007/978-3-642-78400-2
- David Kazhdan and George Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, RI, 1980, pp. 185–203. MR 573434
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. I, II, J. Amer. Math. Soc. 6 (1993), no. 4, 905–947, 949–1011. MR 1186962, DOI 10.1090/S0894-0347-1993-99999-X
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI 10.1007/BF01389157
- Bernhard Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63–102. MR 1258406, DOI 10.24033/asens.1689
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404. MR 158024, DOI 10.2307/2373130
- Masaki Kashiwara and Toshiyuki Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level, Duke Math. J. 77 (1995), no. 1, 21–62. MR 1317626, DOI 10.1215/S0012-7094-95-07702-3
- Jean-Louis Loday, Cyclic homology, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992. Appendix E by María O. Ronco. MR 1217970, DOI 10.1007/978-3-662-21739-9
- George Lusztig, Singularities, character formulas, and a $q$-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 208–229. MR 737932
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- George Lusztig, Quantum groups at roots of $1$, Geom. Dedicata 35 (1990), no. 1-3, 89–113. MR 1066560, DOI 10.1007/BF00147341
- G. Lusztig, Cells in affine Weyl groups and tensor categories, Adv. Math. 129 (1997), no. 1, 85–98. MR 1458414, DOI 10.1006/aima.1997.1645
- George Lusztig, Monodromic systems on affine flag manifolds, Proc. Roy. Soc. London Ser. A 445 (1994), no. 1923, 231–246. MR 1276910, DOI 10.1098/rspa.1994.0058
- Ivan Mirković and Kari Vilonen, Perverse sheaves on affine Grassmannians and Langlands duality, Math. Res. Lett. 7 (2000), no. 1, 13–24. MR 1748284, DOI 10.4310/MRL.2000.v7.n1.a2
- Susan Montgomery, Fixed rings of finite automorphism groups of associative rings, Lecture Notes in Mathematics, vol. 818, Springer, Berlin, 1980. MR 590245, DOI 10.1007/BFb0091561
- Andrew Pressley and Graeme Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR 900587
- Toshiyuki Tanisaki, Hodge modules, equivariant $K$-theory and Hecke algebras, Publ. Res. Inst. Math. Sci. 23 (1987), no. 5, 841–879. MR 934674, DOI 10.2977/prims/1195176035
- David A. Vogan Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser, Boston, MA, 1981. MR 632407
Bibliographic Information
- Sergey Arkhipov
- Affiliation: Department of Mathematics, Yale University, 10 Hillhouse Avenue, New Haven, Connecticut 06520
- Email: serguei.arkhipov@yale.edu
- Roman Bezrukavnikov
- Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois 60208
- MR Author ID: 347192
- Email: bezrukav@math.northwestern.edu
- Victor Ginzburg
- Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
- Email: ginzburg@math.uchicago.edu
- Received by editor(s): April 20, 2003
- Published electronically: April 13, 2004
- © Copyright 2004 American Mathematical Society
- Journal: J. Amer. Math. Soc. 17 (2004), 595-678
- MSC (2000): Primary 16S38; Secondary 14A22
- DOI: https://doi.org/10.1090/S0894-0347-04-00454-0
- MathSciNet review: 2053952