Dimension and randomness in groups acting on rooted trees
HTML articles powered by AMS MathViewer
- by Miklós Abért and Bálint Virág;
- J. Amer. Math. Soc. 18 (2005), 157-192
- DOI: https://doi.org/10.1090/S0894-0347-04-00467-9
- Published electronically: September 2, 2004
Abstract:
We explore the structure of the $p$-adic automorphism group $Y$ of the infinite rooted regular tree. We determine the asymptotic order of a typical element, answering an old question of Turán. We initiate the study of a general dimension theory of groups acting on rooted trees. We describe the relationship between dimension and other properties of groups such as solvability, existence of dense free subgroups and the normal subgroup structure. We show that subgroups of $W$ generated by three random elements are full dimensional and that there exist finitely generated subgroups of arbitrary dimension. Specifically, our results solve an open problem of Shalev and answer a question of Sidki.References
- A. G. Abercrombie, Subgroups and subrings of profinite rings, Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 2, 209–222. MR 1281541, DOI 10.1017/S0305004100072522 [In prep]av02 M. Abért and B. Virág. Polynomials of $p$-trees. In preparation.
- Krishna B. Athreya and Peter E. Ney, Branching processes, Die Grundlehren der mathematischen Wissenschaften, Band 196, Springer-Verlag, New York-Heidelberg, 1972. MR 373040, DOI 10.1007/978-3-642-65371-1
- Y. Barnea and M. Larsen, A non-abelian free pro-$p$ group is not linear over a local field, J. Algebra 214 (1999), no. 1, 338–341. MR 1684856, DOI 10.1006/jabr.1998.7682
- Yiftach Barnea and Aner Shalev, Hausdorff dimension, pro-$p$ groups, and Kac-Moody algebras, Trans. Amer. Math. Soc. 349 (1997), no. 12, 5073–5091. MR 1422889, DOI 10.1090/S0002-9947-97-01918-1
- Y. Barnea, A. Shalev, and E. I. Zelmanov, Graded subalgebras of affine Kac-Moody algebras, Israel J. Math. 104 (1998), 321–334. MR 1622319, DOI 10.1007/BF02897069
- Laurent Bartholdi and Rostislav I. Grigorchuk, Lie methods in growth of groups and groups of finite width, Computational and geometric aspects of modern algebra (Edinburgh, 1998) London Math. Soc. Lecture Note Ser., vol. 275, Cambridge Univ. Press, Cambridge, 2000, pp. 1–27. MR 1776763, DOI 10.1017/CBO9780511600609.002
- Meenaxi Bhattacharjee, The ubiquity of free subgroups in certain inverse limits of groups, J. Algebra 172 (1995), no. 1, 134–146. MR 1320624, DOI 10.1006/jabr.1995.1053
- J. D. Biggins, Chernoff’s theorem in the branching random walk, J. Appl. Probability 14 (1977), no. 3, 630–636. MR 464415, DOI 10.1017/s0021900200025900
- Nigel Boston, $p$-adic Galois representations and pro-$p$ Galois groups, New horizons in pro-$p$ groups, Progr. Math., vol. 184, Birkhäuser Boston, Boston, MA, 2000, pp. 329–348. MR 1765126
- F. M. Dekking and B. Host, Limit distributions for minimal displacement of branching random walks, Probab. Theory Related Fields 90 (1991), no. 3, 403–426. MR 1133373, DOI 10.1007/BF01193752
- John D. Dixon, The probability of generating the symmetric group, Math. Z. 110 (1969), 199–205. MR 251758, DOI 10.1007/BF01110210
- J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$p$-groups, London Mathematical Society Lecture Note Series, vol. 157, Cambridge University Press, Cambridge, 1991. MR 1152800
- Marcus du Sautoy, Dan Segal, and Aner Shalev (eds.), New horizons in pro-$p$ groups, Progress in Mathematics, vol. 184, Birkhäuser Boston, Inc., Boston, MA, 2000. MR 1765115, DOI 10.1007/978-1-4612-1380-2
- P. Erdős and P. Turán, On some problems of a statistical group-theory. I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 (1965), 175–186 (1965). MR 184994, DOI 10.1007/BF00536750
- Steven N. Evans, Eigenvalues of random wreath products, Electron. J. Probab. 7 (2002), no. 9, 15. MR 1902842, DOI 10.1214/EJP.v7-108
- Piotr W. Gawron, Volodymyr V. Nekrashevych, and Vitaly I. Sushchansky, Conjugation in tree automorphism groups, Internat. J. Algebra Comput. 11 (2001), no. 5, 529–547. MR 1869230, DOI 10.1142/S021819670100070X
- R. I. Grigorchuk, Just infinite branch groups, New horizons in pro-$p$ groups, Progr. Math., vol. 184, Birkhäuser Boston, Boston, MA, 2000, pp. 121–179. MR 1765119
- R. I. Grigorchuk, W. N. Herfort, and P. A. Zalesskii, The profinite completion of certain torsion $p$-groups, Algebra (Moscow, 1998) de Gruyter, Berlin, 2000, pp. 113–123. MR 1754662
- R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanskiĭ, Automata, dynamical systems, and groups, Tr. Mat. Inst. Steklova 231 (2000), no. Din. Sist., Avtom. i Beskon. Gruppy, 134–214 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 4(231) (2000), 128–203. MR 1841755
- J. M. Hammersley, Postulates for subadditive processes, Ann. Probability 2 (1974), 652–680. MR 370721, DOI 10.1214/aop/1176996611
- L. G. Kovács and M. F. Newman, Generating transitive permutation groups, Quart. J. Math. Oxford Ser. (2) 39 (1988), no. 155, 361–372. MR 957277, DOI 10.1093/qmath/39.3.361
- M. F. Newman, Csaba Schneider, and Aner Shalev, The entropy of graded algebras, J. Algebra 223 (2000), no. 1, 85–100. MR 1738253, DOI 10.1006/jabr.1999.8053
- P. P. Pálfy and M. Szalay, On a problem of P. Turán concerning Sylow subgroups, Studies in pure mathematics, Birkhäuser, Basel, 1983, pp. 531–542. MR 820249 [2001]puchta2 J.-C. Puchta. Unpublished. [2003]puchta J.-C. Puchta. The order of elements of $p$-sylow subgroups of the symmetric group. Preprint.
- László Pyber and Aner Shalev, Residual properties of groups and probabilistic methods, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 4, 275–278 (English, with English and French summaries). MR 1854764, DOI 10.1016/S0764-4442(01)02044-4
- Aner Shalev, Probabilistic group theory, Groups St. Andrews 1997 in Bath, II, London Math. Soc. Lecture Note Ser., vol. 261, Cambridge Univ. Press, Cambridge, 1999, pp. 648–678. MR 1676661, DOI 10.1017/CBO9780511666148.028
- Aner Shalev, Lie methods in the theory of pro-$p$ groups, New horizons in pro-$p$ groups, Progr. Math., vol. 184, Birkhäuser Boston, Boston, MA, 2000, pp. 1–54. MR 1765116
- Said Sidki, Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity, J. Math. Sci. (New York) 100 (2000), no. 1, 1925–1943. Algebra, 12. MR 1774362, DOI 10.1007/BF02677504
- G. A. Soifer and T. N. Venkataramana, Finitely generated profinitely dense free groups in higher rank semi-simple groups, Transform. Groups 5 (2000), no. 1, 93–100. MR 1745714, DOI 10.1007/BF01237181 [1984]sushchansky V. Sushchansky. Isometry groups of the Baire $p$-spaces. Dop. AN URSR, 8:27–30. (in Ukranian).
- J. S. Wilson, Groups with every proper quotient finite, Proc. Cambridge Philos. Soc. 69 (1971), 373–391. MR 274575, DOI 10.1017/s0305004100046818
- John S. Wilson, On just infinite abstract and profinite groups, New horizons in pro-$p$ groups, Progr. Math., vol. 184, Birkhäuser Boston, Boston, MA, 2000, pp. 181–203. MR 1765120
- P. A. Zalesskii, Profinite groups admitting just infinite quotients, Monatsh. Math. 135 (2002), no. 2, 167–171. MR 1894095, DOI 10.1007/s006050200013
- E. Zelmanov, On groups satisfying the Golod-Shafarevich condition, New horizons in pro-$p$ groups, Progr. Math., vol. 184, Birkhäuser Boston, Boston, MA, 2000, pp. 223–232. MR 1765122
[2001]sidki01 S. Sidki. Oxford University Algebra Seminar Talk, October 30, 2001
.
Bibliographic Information
- Miklós Abért
- Affiliation: Department of Mathematics, University of Chicago, 5734 University Ave., Chicago, Illinois 60637
- Email: abert@math.uchicago.edu
- Bálint Virág
- Affiliation: Department of Mathematics, University of Toronto, 100 St George St., Toronto, Ontario, Canada M5S 3G3
- MR Author ID: 641409
- Email: balint@math.toronto.edu
- Received by editor(s): February 16, 2003
- Published electronically: September 2, 2004
- Additional Notes: The first author’s research was partially supported by OTKA grant T38059 and NSF grant #DMS-0401006.
The second author’s research was partially supported by NSF grant #DMS-0206781 and the Canada Research Chair program. - © Copyright 2004 M. Abért and B. Virág
- Journal: J. Amer. Math. Soc. 18 (2005), 157-192
- MSC (2000): Primary 20E08, 60J80, 37C20; Secondary 20F69, 20E18, 20B27, 28A78
- DOI: https://doi.org/10.1090/S0894-0347-04-00467-9
- MathSciNet review: 2114819