Analysis of the heterogeneous multiscale method for elliptic homogenization problems
HTML articles powered by AMS MathViewer
- by Weinan E, Pingbing Ming and Pingwen Zhang;
- J. Amer. Math. Soc. 18 (2005), 121-156
- DOI: https://doi.org/10.1090/S0894-0347-04-00469-2
- Published electronically: September 16, 2004
- HTML | PDF | Request permission
Abstract:
A comprehensive analysis is presented for the heterogeneous multiscale method (HMM for short) applied to various elliptic homogenization problems. These problems can be either linear or nonlinear, with deterministic or random coefficients. In most cases considered, optimal estimates are proved for the error between the HMM solutions and the homogenized solutions. Strategies for retrieving the microstructural information from the HMM solutions are discussed and analyzed.References
- A75 R.A. Adams and J.J. F. Fournier, Sobolev Spaces, second edition, Academic Press, New York, 2003.
- Grégoire Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal. 23 (1992), no. 6, 1482–1518. MR 1185639, DOI 10.1137/0523084
- Ivo Babuška, Homogenization and its application. Mathematical and computational problems, Numerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975) Academic Press, New York-London, 1976, pp. 89–116. MR 502025
- Ivo Babuška, Solution of interface problems by homogenization. I, SIAM J. Math. Anal. 7 (1976), no. 5, 603–634. MR 509273, DOI 10.1137/0507048
- Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou, Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, vol. 5, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503330 Bm81 L. Boccardo and F. Murat, Homogénéisation de problémes quasi-linéaires, Publ. IRMA, Lille., 3 (1981), no. 7, 13–51.
- J. F. Bourgat, Numerical experiments of the homogenization method for operators with periodic coefficients, Computing methods in applied sciences and engineering (Proc. Third Internat. Sympos., Versailles, 1977) Lecture Notes in Math., vol. 704, Springer, Berlin, 1979, pp. 330–356. MR 540121
- Achi Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp. 31 (1977), no. 138, 333–390. MR 431719, DOI 10.1090/S0025-5718-1977-0431719-X
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- P. G. Ciarlet and P.-A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York-London, 1972, pp. 409–474. MR 421108
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. no. , no. R-2, 77–84 (English, with French summary). MR 400739
- Joseph G. Conlon and Ali Naddaf, On homogenization of elliptic equations with random coefficients, Electron. J. Probab. 5 (2000), no. 9, 58. MR 1768843, DOI 10.1214/EJP.v5-65 Dul91 L.J. Durlofsky, Numerical calculation of equivalent grid block permeability tensors for heterogeneous poros-media, Water. Resour. Res., 28 (1992), 699-708.
- Weinan E, Homogenization of linear and nonlinear transport equations, Comm. Pure Appl. Math. 45 (1992), no. 3, 301–326. MR 1151269, DOI 10.1002/cpa.3160450304
- Weinan E and Bjorn Engquist, The heterogeneous multiscale methods, Commun. Math. Sci. 1 (2003), no. 1, 87–132. MR 1979846, DOI 10.4310/CMS.2003.v1.n1.a8 Ee02b W. E and B. Engquist, The heterogeneous multiscale method for homogenization problems, submitted to MMS, 2002.
- Weinan E and Bjorn Engquist, Multiscale modeling and computation, Notices Amer. Math. Soc. 50 (2003), no. 9, 1062–1070. MR 2002752 Ey04 W. E and X.Y. Yue, Heterogeneous multiscale method for locally self-similar problems, Comm. Math. Sci., 2 (2004), 137–144.
- Yalchin R. Efendiev, Thomas Y. Hou, and Xiao-Hui Wu, Convergence of a nonconforming multiscale finite element method, SIAM J. Numer. Anal. 37 (2000), no. 3, 888–910. MR 1740386, DOI 10.1137/S0036142997330329
- Mark Freidlin, Functional integration and partial differential equations, Annals of Mathematics Studies, vol. 109, Princeton University Press, Princeton, NJ, 1985. MR 833742, DOI 10.1515/9781400881598
- M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, Springer-Verlag, New York, 1998. Translated from the 1979 Russian original by Joseph Szücs. MR 1652127, DOI 10.1007/978-1-4612-0611-8
- N. Fusco and G. Moscariello, On the homogenization of quasilinear divergence structure operators, Ann. Mat. Pura Appl. (4) 146 (1987), 1–13. MR 916685, DOI 10.1007/BF01762357
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Thomas Y. Hou and Xiao-Hui Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys. 134 (1997), no. 1, 169–189. MR 1455261, DOI 10.1006/jcph.1997.5682
- Ioannis G. Kevrekidis, C. William Gear, James M. Hyman, Panagiotis G. Kevrekidis, Olof Runborg, and Constantinos Theodoropoulos, Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis, Commun. Math. Sci. 1 (2003), no. 4, 715–762. MR 2041455, DOI 10.4310/CMS.2003.v1.n4.a5 KO02J. Knap and M. Ortiz, An analysis of the quasicontinuum method, J. Mech. Phys. Solids., 49 (2001), 1899-1923.
- S. M. Kozlov, The averaging of random operators, Mat. Sb. (N.S.) 109(151) (1979), no. 2, 188–202, 327 (Russian). MR 542557
- A. M. Matache, I. Babuška, and C. Schwab, Generalized $p$-FEM in homogenization, Numer. Math. 86 (2000), no. 2, 319–375. MR 1777492, DOI 10.1007/PL00005409
- Graeme W. Milton, The theory of composites, Cambridge Monographs on Applied and Computational Mathematics, vol. 6, Cambridge University Press, Cambridge, 2002. MR 1899805, DOI 10.1017/CBO9780511613357 My03 P.B. Ming and X.Y. Yue, Numerical methods for multiscale elliptic problems, preprint, 2003.
- Shari Moskow and Michael Vogelius, First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), no. 6, 1263–1299. MR 1489436, DOI 10.1017/S0308210500027050
- François Murat and Luc Tartar, $H$-convergence, Topics in the mathematical modelling of composite materials, Progr. Nonlinear Differential Equations Appl., vol. 31, Birkhäuser Boston, Boston, MA, 1997, pp. 21–43. MR 1493039
- Gabriel Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal. 20 (1989), no. 3, 608–623. MR 990867, DOI 10.1137/0520043
- J. Tinsley Oden and Kumar S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms, J. Comput. Phys. 164 (2000), no. 1, 22–47. MR 1786241, DOI 10.1006/jcph.2000.6585
- G. C. Papanicolaou and S. R. S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Random fields, Vol. I, II (Esztergom, 1979) Colloq. Math. Soc. János Bolyai, vol. 27, North-Holland, Amsterdam-New York, 1981, pp. 835–873. MR 712714
- Rolf Rannacher and Ridgway Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982), no. 158, 437–445. MR 645661, DOI 10.1090/S0025-5718-1982-0645661-4
- Christoph Schwab and Ana-Maria Matache, Generalized FEM for homogenization problems, Multiscale and multiresolution methods, Lect. Notes Comput. Sci. Eng., vol. 20, Springer, Berlin, 2002, pp. 197–237. MR 1928567, DOI 10.1007/978-3-642-56205-1_{4}
- Ridgway Scott, Optimal $L^{\infty }$ estimates for the finite element method on irregular meshes, Math. Comp. 30 (1976), no. 136, 681–697. MR 436617, DOI 10.1090/S0025-5718-1976-0436617-2
- Sergio Spagnolo, Convergence in energy for elliptic operators, Numerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975) Academic Press, New York-London, 1976, pp. 469–498. MR 477444
- Luc Tartar, An introduction to the homogenization method in optimal design, Optimal shape design (Tróia, 1998) Lecture Notes in Math., vol. 1740, Springer, Berlin, 2000, pp. 47–156. MR 1804685, DOI 10.1007/BFb0106742
- Jinchao Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal. 33 (1996), no. 5, 1759–1777. MR 1411848, DOI 10.1137/S0036142992232949
- V. V. Yurinskiĭ, Averaging of symmetric diffusion in a random medium, Sibirsk. Mat. Zh. 27 (1986), no. 4, 167–180, 215 (Russian). MR 867870
- V. V. Zhikov, On an extension and an application of the two-scale convergence method, Mat. Sb. 191 (2000), no. 7, 31–72 (Russian, with Russian summary); English transl., Sb. Math. 191 (2000), no. 7-8, 973–1014. MR 1809928, DOI 10.1070/SM2000v191n07ABEH000491
- V. V. Zhikov, S. M. Kozlov, and O. A. Oleĭnik, Usrednenie differentsial′nykh operatorov, “Nauka”, Moscow, 1993 (Russian, with English and Russian summaries). MR 1318242
Bibliographic Information
- Weinan E
- Affiliation: Department of Mathematics and PACM, Princeton University, Princeton, New Jersey 08544 and School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
- MR Author ID: 214383
- ORCID: 0000-0003-0272-9500
- Email: weinan@Princeton.EDU
- Pingbing Ming
- Affiliation: No. 55, Zhong-Guan-Cun East Road, Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
- Email: mpb@lsec.cc.ac.cn
- Pingwen Zhang
- Affiliation: School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
- Email: pzhang@pku.edu.cn
- Received by editor(s): January 2, 2003
- Published electronically: September 16, 2004
- Additional Notes: The work of the first author was partially supported by ONR grant N00014-01-1-0674 and the National Natural Science Foundation of China through a Class B Award for Distinguished Young Scholars 10128102.
The work of the second author was partially supported by the Special Funds for the Major State Basic Research Projects G1999032804 and was also supported by the National Natural Science Foundation of China 10201033.
The work of the third author was partially supported by the Special Funds for the Major State Research Projects G1999032804 and the National Natural Science Foundation of China for Distinguished Young Scholars 10225103.
We thank Bjorn Engquist for inspiring discussions on the topic studied here. - © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 18 (2005), 121-156
- MSC (2000): Primary 65N30, 74Q05; Secondary 74Q15, 65C30
- DOI: https://doi.org/10.1090/S0894-0347-04-00469-2
- MathSciNet review: 2114818