The hypoelliptic Laplacian on the cotangent bundle
Author:
Jean-Michel Bismut
Journal:
J. Amer. Math. Soc. 18 (2005), 379-476
MSC (2000):
Primary 35H10, 58A14, 58J20
DOI:
https://doi.org/10.1090/S0894-0347-05-00479-0
Published electronically:
February 28, 2005
MathSciNet review:
2137981
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper, we construct a new version of Hodge theory, where the corresponding Laplacian acts on the total space of the cotangent bundle. This Laplacian is a hypoelliptic operator, which is in general non-self-adjoint. When properly interpreted, it provides an interpolation between classical Hodge theory and the generator of the geodesic flow. The construction is also done in families in the superconnection formalism of Quillen and extends earlier work by Lott and the author.
- M. F. Atiyah, Circular symmetry and stationary-phase approximation, Astérisque 131 (1985), 43–59. Colloquium in honor of Laurent Schwartz, Vol. 1 (Palaiseau, 1983). MR 816738
- Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992. MR 1215720
- Alain Berthomieu and Jean-Michel Bismut, Quillen metrics and higher analytic torsion forms, J. Reine Angew. Math. 457 (1994), 85–184. MR 1305280, DOI https://doi.org/10.1515/crll.1994.457.85
- Jean-Michel Bismut, Mécanique aléatoire, Lecture Notes in Mathematics, vol. 866, Springer-Verlag, Berlin-New York, 1981 (French). With an English summary. MR 629977
- Jean-Michel Bismut, Index theorem and equivariant cohomology on the loop space, Comm. Math. Phys. 98 (1985), no. 2, 213–237. MR 786574
- Jean-Michel Bismut, The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math. 83 (1986), no. 1, 91–151. MR 813584, DOI https://doi.org/10.1007/BF01388755
- J.-M. Bismut, Bott-Chern currents, excess normal bundles and the Chern character, Geom. Funct. Anal. 2 (1992), no. 3, 285–340. MR 1177315, DOI https://doi.org/10.1007/BF01896875
- Jean-Michel Bismut, On certain infinite-dimensional aspects of Arakelov intersection theory, Comm. Math. Phys. 148 (1992), no. 2, 217–248. MR 1178144
- Jean-Michel Bismut, Equivariant immersions and Quillen metrics, J. Differential Geom. 41 (1995), no. 1, 53–157. MR 1316553
- Jean-Michel Bismut, Holomorphic families of immersions and higher analytic torsion forms, Astérisque 244 (1997), viii+275. MR 1623496
- Jean-Michel Bismut, Holomorphic and de Rham torsion, Compos. Math. 140 (2004), no. 5, 1302–1356. MR 2081158, DOI https://doi.org/10.1112/S0010437X04000478
- Jean-Michel Bismut, Une déformation de la théorie de Hodge sur le fibré cotangent, C. R. Math. Acad. Sci. Paris 338 (2004), no. 6, 471–476 (French, with English and French summaries). MR 2057728, DOI https://doi.org/10.1016/j.crma.2004.01.012
- Jean-Michel Bismut, Le laplacien hypoelliptique sur le fibré cotangent, C. R. Math. Acad. Sci. Paris 338 (2004), no. 7, 555–559 (French, with English and French summaries). MR 2057029, DOI https://doi.org/10.1016/j.crma.2004.01.009
- Jean-Michel Bismut, Une déformation en famille du complexe de de Rham-Hodge, C. R. Math. Acad. Sci. Paris 338 (2004), no. 8, 623–627 (French, with English and French summaries). MR 2056471, DOI https://doi.org/10.1016/j.crma.2004.01.010 [B04e]Bismut04e J.-M. Bismut. Le Laplacien hypoelliptique. In Séminaire: Équations aux Dérivées Partielles, 2003–2004, Sémin. Équ. Dériv. Partielles,Exp. No. XXII, 15. École Polytech., Palaiseau, 2004.
- Jean-Michel Bismut and Daniel S. Freed, The analysis of elliptic families. I. Metrics and connections on determinant bundles, Comm. Math. Phys. 106 (1986), no. 1, 159–176. MR 853982
- J.-M. Bismut, H. Gillet, and C. Soulé, Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys. 115 (1988), no. 1, 49–78. MR 929146
- Jean-Michel Bismut and Sebastian Goette, Families torsion and Morse functions, Astérisque 275 (2001), x+293 (English, with English and French summaries). MR 1867006
- Jean-Michel Bismut and Sebastian Goette, Equivariant de Rham torsions, Ann. of Math. (2) 159 (2004), no. 1, 53–216. MR 2051391, DOI https://doi.org/10.4007/annals.2004.159.53
- Jean-Michel Bismut and Gilles Lebeau, Complex immersions and Quillen metrics, Inst. Hautes Études Sci. Publ. Math. 74 (1991), ii+298 pp. (1992). MR 1188532 [BL05]BismutLebeau04a J.-M. Bismut and G. Lebeau. The hypoelliptic Laplacian and Ray-Singer metrics. To appear, 2005.
- Jean-Michel Bismut and John Lott, Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc. 8 (1995), no. 2, 291–363 (English, with English and French summaries). MR 1303026, DOI https://doi.org/10.1090/S0894-0347-1995-1303026-5
- Jean-Michel Bismut and Weiping Zhang, An extension of a theorem by Cheeger and Müller, Astérisque 205 (1992), 235 (English, with French summary). With an appendix by François Laudenbach. MR 1185803
- J.-M. Bismut and W. Zhang, Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle, Geom. Funct. Anal. 4 (1994), no. 2, 136–212 (English, with English and French summaries). MR 1262703, DOI https://doi.org/10.1007/BF01895837
- Raoul Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313–337. MR 110104, DOI https://doi.org/10.2307/1970106
- Jeff Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979), no. 2, 259–322. MR 528965, DOI https://doi.org/10.2307/1971113
- David Fried, The zeta functions of Ruelle and Selberg. I, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 4, 491–517. MR 875085
- David Fried, Torsion and closed geodesics on complex hyperbolic manifolds, Invent. Math. 91 (1988), no. 1, 31–51. MR 918235, DOI https://doi.org/10.1007/BF01404911
- B. Helffer and J. Sjöstrand, Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten, Comm. Partial Differential Equations 10 (1985), no. 3, 245–340 (French). MR 780068, DOI https://doi.org/10.1080/03605308508820379
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI https://doi.org/10.1007/BF02392081
- Finn Faye Knudsen and David Mumford, The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand. 39 (1976), no. 1, 19–55. MR 437541, DOI https://doi.org/10.7146/math.scand.a-11642
- A. Kolmogoroff, Zufällige Bewegungen (zur Theorie der Brownschen Bewegung), Ann. of Math. (2) 35 (1934), no. 1, 116–117 (German). MR 1503147, DOI https://doi.org/10.2307/1968123
- Varghese Mathai and Daniel Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986), no. 1, 85–110. MR 836726, DOI https://doi.org/10.1016/0040-9383%2886%2990007-8
- Henri Moscovici and Robert J. Stanton, $R$-torsion and zeta functions for locally symmetric manifolds, Invent. Math. 105 (1991), no. 1, 185–216. MR 1109626, DOI https://doi.org/10.1007/BF01232263
- Jeff Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979), no. 2, 259–322. MR 528965, DOI https://doi.org/10.2307/1971113
- Daniel Quillen, Superconnections and the Chern character, Topology 24 (1985), no. 1, 89–95. MR 790678, DOI https://doi.org/10.1016/0040-9383%2885%2990047-3
- D. Kvillen, Determinants of Cauchy-Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985), no. 1, 37–41, 96 (Russian). MR 783704
- D. B. Ray and I. M. Singer, $R$-torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971), 145–210. MR 295381, DOI https://doi.org/10.1016/0001-8708%2871%2990045-4 [Re35]Reidemeister35 K. Reidemeister. Homotopieringe und Linsenraüm. Hamburger Abhandl., pages 102–109, 1935.
- Edward Witten, Supersymmetry and Morse theory, J. Differential Geometry 17 (1982), no. 4, 661–692 (1983). MR 683171
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 35H10, 58A14, 58J20
Retrieve articles in all journals with MSC (2000): 35H10, 58A14, 58J20
Additional Information
Jean-Michel Bismut
Affiliation:
Département de Mathématique, Université Paris-Sud, Bâtiment 425, 91405 Orsay, France
Email:
Jean-Michel.Bismut@math.u-psud.fr
Keywords:
Hypoelliptic equations,
Hodge theory,
index theory and related fixed point theorems
Received by editor(s):
February 9, 2004
Published electronically:
February 28, 2005
Additional Notes:
The author is indebted to Viviane Baladi, Sebastian Goette and Yves Le Jan for several discussions. Gilles Lebeau’s support and enthusiasm have been essential to the whole project. A referee has also provided much help by reading the manuscript very carefully.
Article copyright:
© Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.