Zeta function of representations of compact $p$-adic analytic groups
HTML articles powered by AMS MathViewer
- by A. Jaikin-Zapirain PDF
- J. Amer. Math. Soc. 19 (2006), 91-118 Request permission
Abstract:
Let $G$ be an FAb compact $p$-adic analytic group and suppose that $p>2$ or $p=2$ and $G$ is uniform. We prove that there are natural numbers $n_1, \ldots , n_k$ and functions $f_1(p^{-s}),\ldots , f_k(p^{-s})$ rational in $p^{-s}$ such that \[ \zeta ^G(s)=\sum _{\lambda \in \operatorname {Irr}(G)} \lambda (1) ^{-s}=\sum _{i=1}^kn_i^{-s}f_i(p^{-s}).\]References
- Hyman Bass, Alexander Lubotzky, Andy R. Magid, and Shahar Mozes, The proalgebraic completion of rigid groups, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part II (Haifa, 2000), 2002, pp. 19–58. MR 1950883, DOI 10.1023/A:1021221727311
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 1–3, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. Translated from the French; Reprint of the 1975 edition. MR 979493
- J. Denef, The rationality of the Poincaré series associated to the $p$-adic points on a variety, Invent. Math. 77 (1984), no. 1, 1–23. MR 751129, DOI 10.1007/BF01389133
- J. Denef, Multiplicity of the poles of the Poincaré series of a $p$-adic subanalytic set, Séminaire de Théorie des Nombres, 1987–1988 (Talence, 1987–1988) Univ. Bordeaux I, Talence, [1988?], pp. Exp. No. 43, 8. MR 993136
- Jan Denef, Arithmetic and geometric applications of quantifier elimination for valued fields, Model theory, algebra, and geometry, Math. Sci. Res. Inst. Publ., vol. 39, Cambridge Univ. Press, Cambridge, 2000, pp. 173–198. MR 1773707, DOI 10.2977/prims/1145476152
- J. Denef and L. van den Dries, $p$-adic and real subanalytic sets, Ann. of Math. (2) 128 (1988), no. 1, 79–138. MR 951508, DOI 10.2307/1971463
- J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$p$ groups, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. MR 1720368, DOI 10.1017/CBO9780511470882
- Marcus P. F. du Sautoy, Finitely generated groups, $p$-adic analytic groups and Poincaré series, Ann. of Math. (2) 137 (1993), no. 3, 639–670. MR 1217350, DOI 10.2307/2946534
- François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR 1118841, DOI 10.1017/CBO9781139172417
- J. González-Sánchez and A. Jaikin-Zapirain, On the structure of normal subgroups of potent $p$-groups, J. Algebra 276 (2004), no. 1, 193–209. MR 2054394, DOI 10.1016/j.jalgebra.2003.12.006
- Roger E. Howe, On representations of discrete, finitely generated, torsion-free, nilpotent groups, Pacific J. Math. 73 (1977), no. 2, 281–305. MR 499004, DOI 10.2140/pjm.1977.73.281
- Roger E. Howe, Kirillov theory for compact $p$-adic groups, Pacific J. Math. 73 (1977), no. 2, 365–381. MR 579176, DOI 10.2140/pjm.1977.73.365
- Ishai Ilani, Analytic pro-$p$ groups and their Lie algebras, J. Algebra 176 (1995), no. 1, 34–58. MR 1345293, DOI 10.1006/jabr.1995.1232
- I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0460423
- I. M. Isaacs, Characters of $\pi$-separable groups, J. Algebra 86 (1984), no. 1, 98–128. MR 727371, DOI 10.1016/0021-8693(84)90058-9
- A. A. Kirillov, Merits and demerits of the orbit method, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 4, 433–488. MR 1701415, DOI 10.1090/S0273-0979-99-00849-6
- Benjamin Klopsch, On the Lie theory of $p$-adic analytic groups, Math. Z. 249 (2005), no. 4, 713–730. MR 2126210, DOI 10.1007/s00209-004-0717-1
- E. I. Khukhro, $p$-automorphisms of finite $p$-groups, London Mathematical Society Lecture Note Series, vol. 246, Cambridge University Press, Cambridge, 1998. MR 1615819, DOI 10.1017/CBO9780511526008
- Michel Lazard, Groupes analytiques $p$-adiques, Inst. Hautes Études Sci. Publ. Math. 26 (1965), 389–603 (French). MR 209286
- Alexander Lubotzky and Benjamin Martin, Polynomial representation growth and the congruence subgroup problem, Israel J. Math. 144 (2004), 293–316. MR 2121543, DOI 10.1007/BF02916715
- Alexander Lubotzky and Aner Shalev, On some $\Lambda$-analytic pro-$p$ groups, Israel J. Math. 85 (1994), no. 1-3, 307–337. MR 1264349, DOI 10.1007/BF02758646 Mac C. C. Macduffee, The theory of matrices, Chelsea Publishing Company, New York.
- Michio Suzuki, Gun ron. Vol. 1, Gendai Sūgaku [Modern Mathematics], vol. 18, Iwanami Shoten, Tokyo, 1977 (Japanese). MR 514842
Additional Information
- A. Jaikin-Zapirain
- Affiliation: Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- MR Author ID: 646902
- Email: andrei.jaikin@uam.es
- Received by editor(s): June 2, 2004
- Published electronically: September 7, 2005
- Additional Notes: This work has been supported by the FEDER, MEC Grant MTM2004-04665, and the Ramón y Cajal Program
- © Copyright 2005 American Mathematical Society
- Journal: J. Amer. Math. Soc. 19 (2006), 91-118
- MSC (2000): Primary 20E18; Secondary 20C15, 20G25, 22E35
- DOI: https://doi.org/10.1090/S0894-0347-05-00501-1
- MathSciNet review: 2169043