Sharp transition between extinction and propagation of reaction
HTML articles powered by AMS MathViewer
- by Andrej Zlatoš PDF
- J. Amer. Math. Soc. 19 (2006), 251-263 Request permission
Abstract:
We consider the reaction-diffusion equation \[ T_t = T_{xx} + f(T) \] on ${\mathbb {R}}$ with $T_0(x) \equiv \chi _{[-L,L]} (x)$ and $f(0)=f(1)=0$. In 1964 Kanel$^{\prime }$ proved that if $f$ is an ignition non-linearity, then $T\to 0$ as $t\to \infty$ when $L<L_0$, and $T\to 1$ when $L>L_1$. We answer the open question of the relation of $L_0$ and $L_1$ by showing that $L_0=L_1$. We also determine the large time limit of $T$ in the critical case $L=L_0$, thus providing the phase portrait for the above PDE with respect to a 1-parameter family of initial data. Analogous results for combustion and bistable non-linearities are proved as well.References
- D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial differential equations and related topics (Program, Tulane Univ., New Orleans, La., 1974) Lecture Notes in Math., Vol. 446, Springer, Berlin, 1975, pp. 5–49. MR 0427837 Berrev H. Berestycki, The influence of advection on the propagation of fronts in reaction-diffusion equations, Nonlinear PDEs in Condensed Matter and Reactive Flows, NATO Science Series C, 569, H. Berestycki and Y. Pomeau eds., Kluwer, Dordrecht, 2003.
- J. Busca, M. A. Jendoubi, and P. Poláčik, Convergence to equilibrium for semilinear parabolic problems in $\Bbb R^N$, Comm. Partial Differential Equations 27 (2002), no. 9-10, 1793–1814. MR 1941658, DOI 10.1081/PDE-120016128
- Peter Constantin, Alexander Kiselev, and Leonid Ryzhik, Quenching of flames by fluid advection, Comm. Pure Appl. Math. 54 (2001), no. 11, 1320–1342. MR 1846800, DOI 10.1002/cpa.3000 FKR A. Fannjiang, A. Kiselev, and L. Ryzhik, Quenching of reaction by cellular flow, preprint.
- Paul C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rational Mech. Anal. 65 (1977), no. 4, 335–361. MR 442480, DOI 10.1007/BF00250432 Fisher R.A. Fisher, The advance of advantageous genes, Ann. of Eugenics 7 (1937), 355–369.
- Ja. I. Kanel′, Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory, Mat. Sb. (N.S.) 59 (101) (1962), no. suppl., 245–288 (Russian). MR 0157130
- Ja. I. Kanel′, Stabilization of the solutions of the equations of combustion theory with finite initial functions, Mat. Sb. (N.S.) 65 (107) (1964), 398–413 (Russian). MR 0177209 KZ A. Kiselev and A. Zlatoš, Quenching of combustion by shear flows, to appear in Duke Math. J. KPP A.N. Kolmogorov, I.G. Petrovskii, and N.S. Piskunov, Étude de l’équation de la chaleur de matière et son application à un problème biologique, Bull. Moskov. Gos. Univ. Mat. Mekh. 1 (1937), 1–25. NAY J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. Inst. Radio Eng. 50 (1962), 2061–2070.
- Jean-Michel Roquejoffre, Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders, Ann. Inst. H. Poincaré C Anal. Non Linéaire 14 (1997), no. 4, 499–552 (English, with English and French summaries). MR 1464532, DOI 10.1016/S0294-1449(97)80137-0
- Joel Smoller, Shock waves and reaction-diffusion equations, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York, 1994. MR 1301779, DOI 10.1007/978-1-4612-0873-0
- Jack X. Xin, Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media, J. Statist. Phys. 73 (1993), no. 5-6, 893–926. MR 1251222, DOI 10.1007/BF01052815
- Jack Xin, Front propagation in heterogeneous media, SIAM Rev. 42 (2000), no. 2, 161–230. MR 1778352, DOI 10.1137/S0036144599364296 ZFK J.B. Zel’dovich and D.A. Frank-Kamenetskii, A theory of thermal propagation of flame, Acta Physiochimica USSR 9 (1938), 341–350. ZlaArrh A. Zlatoš, Quenching and propagation of combustion without ignition temperature cutoff, Nonlinearity 18 (2005), 1463–1475.
Additional Information
- Andrej Zlatoš
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- Email: zlatos@math.wisc.edu
- Received by editor(s): April 15, 2005
- Published electronically: August 24, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 19 (2006), 251-263
- MSC (2000): Primary 35K57; Secondary 35K15
- DOI: https://doi.org/10.1090/S0894-0347-05-00504-7
- MathSciNet review: 2169048