Weakly null sequences in $L_1$
HTML articles powered by AMS MathViewer
- by William B. Johnson, Bernard Maurey and Gideon Schechtman;
- J. Amer. Math. Soc. 20 (2007), 25-36
- DOI: https://doi.org/10.1090/S0894-0347-06-00548-0
- Published electronically: September 19, 2006
Abstract:
We construct a weakly null normalized sequence $\{f_i\}_{i=1}^{\infty }$ in $L_1$ so that for each $\varepsilon >0$, the Haar basis is $(1+\varepsilon )$-equivalent to a block basis of every subsequence of $\{f_i\}_{i=1}^{\infty }$. In particular, the sequence $\{f_i\}_{i=1}^{\infty }$ has no unconditionally basic subsequence. This answers a question raised by Bernard Maurey and H. P. Rosenthal in 1977. A similar example is given in an appropriate class of rearrangement invariant function spaces.References
- W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), no. 4, 851–874. MR 1201238, DOI 10.1090/S0894-0347-1993-1201238-0
- M. I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces $L_{p}$, Studia Math. 21 (1961/62), 161–176. MR 152879, DOI 10.4064/sm-21-2-161-176
- Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. MR 1102015, DOI 10.1007/978-3-642-20212-4
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367, DOI 10.1007/978-3-662-35347-9
- B. Maurey and H. P. Rosenthal, Normalized weakly null sequence with no unconditional subsequence, Studia Math. 61 (1977), no. 1, 77–98. MR 438091, DOI 10.4064/sm-61-1-77-98
- B. Maurey and G. Schechtman, Some remarks on symmetric basic sequences in $L_{1}$, Compositio Math. 38 (1979), no. 1, 67–76. MR 523264
- A. Pełczyński and Z. Semadeni, Spaces of continuous functions. III. Spaces $C(\Omega )$ for $\Omega$ without perfect subsets, Studia Math. 18 (1959), 211–222. MR 107806, DOI 10.4064/sm-18-2-211-222
- Haskell P. Rosenthal, On subspaces of $L^{p}$, Ann. of Math. (2) 97 (1973), 344–373. MR 312222, DOI 10.2307/1970850
Bibliographic Information
- William B. Johnson
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
- MR Author ID: 95220
- Email: johnson@math.tamu.edu
- Bernard Maurey
- Affiliation: Laboratoire d’Analyse et de Mathématiques Appliquées, UMR CNRS 8050, Université de Marne la Vallée, 77454 Champs-sur-Marne, France
- Email: maurey@univ-mlv.fr
- Gideon Schechtman
- Affiliation: Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel
- MR Author ID: 155695
- Email: gideon.schechtman@weizmann.ac.il
- Received by editor(s): June 8, 2004
- Published electronically: September 19, 2006
- Additional Notes: The first author was supported in part by NSF grant DMS-0200690 and NSF grant DMS-0503688, Texas Advanced Research Program 010366-0033-20013 and the U.S.-Israel Binational Science Foundation.
The last author was supported in part by the Israel Science Foundation and the U.S.-Israel Binational Science Foundation and was a participant in the NSF Workshop in Linear Analysis and Probability, Texas A&M University. - © Copyright 2006 by the authors
- Journal: J. Amer. Math. Soc. 20 (2007), 25-36
- MSC (2000): Primary 46B15, 46E30
- DOI: https://doi.org/10.1090/S0894-0347-06-00548-0
- MathSciNet review: 2257395