Parametrization of local CR automorphisms by finite jets and applications
HTML articles powered by AMS MathViewer
- by Bernhard Lamel and Nordine Mir;
- J. Amer. Math. Soc. 20 (2007), 519-572
- DOI: https://doi.org/10.1090/S0894-0347-06-00534-0
- Published electronically: April 25, 2006
- PDF | Request permission
Abstract:
For any real-analytic hypersurface $M\subset \mathbb {C}^N$, which does not contain any complex-analytic subvariety of positive dimension, we show that for every point $p\in M$ the local real-analytic CR automorphisms of $M$ fixing $p$ can be parametrized real-analytically by their $\ell _p$ jets at $p$. As a direct application, we derive a Lie group structure for the topological group $\operatorname {Aut}(M,p)$. Furthermore, we also show that the order $\ell _p$ of the jet space in which the group $\operatorname {Aut}(M,p)$ embeds can be chosen to depend upper-semicontinuously on $p$. As a first consequence, it follows that given any compact real-analytic hypersurface $M$ in $\mathbb {C}^N$, there exists an integer $k$ depending only on $M$ such that for every point $p\in M$ germs at $p$ of CR diffeomorphisms mapping $M$ into another real-analytic hypersurface in $\mathbb {C}^N$ are uniquely determined by their $k$-jet at that point. Another consequence is the following boundary version of H. Cartan’s uniqueness theorem: given any bounded domain $\Omega$ with smooth real-analytic boundary, there exists an integer $k$ depending only on $\partial \Omega$ such that if $H\colon \Omega \to \Omega$ is a proper holomorphic mapping extending smoothly up to $\partial \Omega$ near some point $p\in \partial \Omega$ with the same $k$-jet at $p$ with that of the identity mapping, then necessarily $H=\textrm {Id}$. Our parametrization theorem also holds for the stability group of any essentially finite minimal real-analytic CR manifold of arbitrary codimension. One of the new main tools developed in the paper, which may be of independent interest, is a parametrization theorem for invertible solutions of a certain kind of singular analytic equations, which roughly speaking consists of inverting certain families of parametrized maps with singularities.References
- M. S. Baouendi, P. Ebenfelt, and L. P. Rothschild, Algebraicity of holomorphic mappings between real algebraic sets in $\textbf {C}^n$, Acta Math. 177 (1996), no. 2, 225–273. MR 1440933, DOI 10.1007/BF02392622
- M. S. Baouendi, P. Ebenfelt, and Linda Preiss Rothschild, Parametrization of local biholomorphisms of real analytic hypersurfaces, Asian J. Math. 1 (1997), no. 1, 1–16. MR 1480988, DOI 10.4310/AJM.1997.v1.n1.a1
- M. S. Baouendi, P. Ebenfelt, and Linda Preiss Rothschild, Rational dependence of smooth and analytic CR mappings on their jets, Math. Ann. 315 (1999), no. 2, 205–249. MR 1721797, DOI 10.1007/s002080050365
- M. S. Baouendi, P. Ebenfelt, and Linda Preiss Rothschild, Convergence and finite determination of formal CR mappings, J. Amer. Math. Soc. 13 (2000), no. 4, 697–723. MR 1775734, DOI 10.1090/S0894-0347-00-00343-X
- M. S. Baouendi, P. Ebenfelt, and Linda Preiss Rothschild, Local geometric properties of real submanifolds in complex space, Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 3, 309–336. MR 1754643, DOI 10.1090/S0273-0979-00-00863-6
- M. S. Baouendi, Xiaojun Huang, and Linda Preiss Rothschild, Regularity of CR mappings between algebraic hypersurfaces, Invent. Math. 125 (1996), no. 1, 13–36. MR 1389959, DOI 10.1007/s002220050067
- M. S. Baouendi, H. Jacobowitz, and F. Trèves, On the analyticity of CR mappings, Ann. of Math. (2) 122 (1985), no. 2, 365–400. MR 808223, DOI 10.2307/1971307
- M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, Real submanifolds in complex space and their mappings, Princeton Mathematical Series, vol. 47, Princeton University Press, Princeton, NJ, 1999. MR 1668103, DOI 10.1515/9781400883967
- Thomas Bloom and Ian Graham, On “type” conditions for generic real submanifolds of $\textbf {C}^{n}$, Invent. Math. 40 (1977), no. 3, 217–243. MR 589930, DOI 10.1007/BF01425740
- Albert Boggess, CR manifolds and the tangential Cauchy-Riemann complex, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1991. MR 1211412
- R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths, Exterior differential systems, Mathematical Sciences Research Institute Publications, vol. 18, Springer-Verlag, New York, 1991. MR 1083148, DOI 10.1007/978-1-4613-9714-4
- D. Burns Jr. and S. Shnider, Real hypersurfaces in complex manifolds, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 2, Williams Coll., Williamstown, Mass., 1975) Proc. Sympos. Pure Math., Vol. XXX, Part 2, Amer. Math. Soc., Providence, RI, 1977, pp. 141–168. MR 450603
- Daniel M. Burns and Steven G. Krantz, Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Amer. Math. Soc. 7 (1994), no. 3, 661–676. MR 1242454, DOI 10.1090/S0894-0347-1994-1242454-2 Ca1 E. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes I, Ann. Math. Pura Appl. 11 (1932), no. 4, 17–90. Ca2 —, Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes II, Ann. Scuola Norm. Sup. Pisa 1 (1932), no. 2, 333–354. HCa H. Cartan, Sur les groupes de transformations analytiques., Act. Sc. et Int., Hermann, Paris, 1935.
- S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 425155, DOI 10.1007/BF02392146
- K. Diederich and S. M. Webster, A reflection principle for degenerate real hypersurfaces, Duke Math. J. 47 (1980), no. 4, 835–843. MR 596117, DOI 10.1215/S0012-7094-80-04749-3
- Klas Diederich and John E. Fornaess, Pseudoconvex domains with real-analytic boundary, Ann. of Math. (2) 107 (1978), no. 2, 371–384. MR 477153, DOI 10.2307/1971120
- Seán Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999. MR 1705327, DOI 10.1007/978-1-4471-0869-6
- Peter Ebenfelt, Uniformly Levi degenerate CR manifolds: the 5-dimensional case, Duke Math. J. 110 (2001), no. 1, 37–80. MR 1861088, DOI 10.1215/S0012-7094-01-11012-0
- P. Ebenfelt, B. Lamel, and D. Zaitsev, Finite jet determination of local analytic CR automorphisms and their parametrization by 2-jets in the finite type case, Geom. Funct. Anal. 13 (2003), no. 3, 546–573. MR 1995799, DOI 10.1007/s00039-003-0422-y
- Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65. MR 350069, DOI 10.1007/BF01406845
- Klaus Floret and Joseph Wloka, Einführung in die Theorie der lokalkonvexen Räume, Lecture Notes in Mathematics, No. 56, Springer-Verlag, Berlin-New York, 1968 (German). MR 226355, DOI 10.1007/BFb0098549
- M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics, Vol. 14, Springer-Verlag, New York-Heidelberg, 1973. MR 341518, DOI 10.1007/978-1-4615-7904-5
- W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry. Vol. I, Cambridge, at the University Press; The Macmillan Company, New York, 1947. MR 28055
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
- Xiao Jun Huang, Some applications of Bell’s theorem to weakly pseudoconvex domains, Pacific J. Math. 158 (1993), no. 2, 305–315. MR 1206440, DOI 10.2140/pjm.1993.158.305
- Xiao Jun Huang, A boundary rigidity problem for holomorphic mappings on some weakly pseudoconvex domains, Canad. J. Math. 47 (1995), no. 2, 405–420. MR 1335086, DOI 10.4153/CJM-1995-022-3
- Xiaojun Huang, Local equivalence problems for real submanifolds in complex spaces, Real methods in complex and CR geometry, Lecture Notes in Math., vol. 1848, Springer, Berlin, 2004, pp. 109–163. MR 2087582, DOI 10.1007/978-3-540-44487-9_{3}
- J. J. Kohn, Boundary behavior of $\delta$ on weakly pseudo-convex manifolds of dimension two, J. Differential Geometry 6 (1972), 523–542. MR 322365 Kom H. Komatsu, An Introduction to the Theory of Generalized Functions, Department of Mathematics, University of Tokyo, 1999.
- Steven G. Krantz and Harold R. Parks, A primer of real analytic functions, Basler Lehrbücher [Basel Textbooks], vol. 4, Birkhäuser Verlag, Basel, 1992. MR 1182792, DOI 10.1007/978-3-0348-7644-5 L4 B. Lamel, Explicit bounds for the finite jet determination problem, Trans. Amer. Math. Soc. (to appear). Le H. Lewy, On the boundary behavior of holomorphic mappings, Acad. Naz. Lincei 35 (1977), 1–8. P1 S. Pinchuk, On the analytic continuation of holomorphic mappings, Math. USSR Sbornik 27 (1975), no. 3, 375–392. Po1 H. Poincaré, Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Mat. Palermo II. Ser. 23 (1907), 185–220.
- D. A. Raĭkov, On two classes of locally convex spaces which are important in applications, Voronež. Gos. Univ. Trudy Sem. Funkcional. Anal. 1957 (1957), no. 5, 22–34 (Russian). MR 107804
- Linda Preiss Rothschild, Mappings between real submanifolds in complex space, Explorations in complex and Riemannian geometry, Contemp. Math., vol. 332, Amer. Math. Soc., Providence, RI, 2003, pp. 253–266. MR 2018344, DOI 10.1090/conm/332/05941
- José Sebastião e Silva, Su certe classi di spazi localmente convessi importanti per le applicazioni, Rend. Mat. e Appl. (5) 14 (1955), 388–410 (Italian). MR 70046
- Nancy K. Stanton, Infinitesimal CR automorphisms of real hypersurfaces, Amer. J. Math. 118 (1996), no. 1, 209–233. MR 1375306, DOI 10.1353/ajm.1996.0005
- Noboru Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables, J. Math. Soc. Japan 14 (1962), 397–429. MR 145555, DOI 10.2969/jmsj/01440397
- A. E. Tumanov, Extension of CR-functions into a wedge from a manifold of finite type, Mat. Sb. (N.S.) 136(178) (1988), no. 1, 128–139 (Russian); English transl., Math. USSR-Sb. 64 (1989), no. 1, 129–140. MR 945904, DOI 10.1070/SM1989v064n01ABEH003298
- A. G. Vitushkin, Holomorphic extension of mappings of compact hypersurfaces, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 1, 28–35, 190 (Russian). MR 643891
- Several complex variables. I, Encyclopaedia of Mathematical Sciences, vol. 7, Springer-Verlag, Berlin, 1990. Introduction to complex analysis; A translation of Sovremennye problemy matematiki. Fundamental′nye napravleniya, Tom 7, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985 [ MR0850489 (87f:32003)]; Translation by P. M. Gauthier; Translation edited by A. G. Vitushkin. MR 1043689
- S. M. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), no. 1, 53–68. MR 463482, DOI 10.1007/BF01390203
- Dmitri Zaitsev, Germs of local automorphisms of real-analytic CR structures and analytic dependence on $k$-jets, Math. Res. Lett. 4 (1997), no. 6, 823–842. MR 1492123, DOI 10.4310/MRL.1997.v4.n6.a4
Bibliographic Information
- Bernhard Lamel
- Affiliation: Universität Wien, Fakultät für Mathematik, Nordbergstrasse 15, A-1090 Wien, Austria
- MR Author ID: 685199
- ORCID: 0000-0002-6322-6360
- Email: lamelb@member.ams.org
- Nordine Mir
- Affiliation: Université de Rouen, Laboratoire de Mathématiques Raphaël Salem, UMR 6085 CNRS, Avenue de l’Université, B.P. 12, 76801 Saint Etienne du Rouvray, France
- Email: Nordine.Mir@univ-rouen.fr
- Received by editor(s): June 10, 2005
- Published electronically: April 25, 2006
- Additional Notes: The first author was supported by the FWF, Projekt P17111.
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 20 (2007), 519-572
- MSC (2000): Primary 32H02, 32H12, 32V05, 32V15, 32V20, 32V25, 32V35, 32V40
- DOI: https://doi.org/10.1090/S0894-0347-06-00534-0
- MathSciNet review: 2276779