New upper bounds for kissing numbers from semidefinite programming
HTML articles powered by AMS MathViewer
- by Christine Bachoc and Frank Vallentin;
- J. Amer. Math. Soc. 21 (2008), 909-924
- DOI: https://doi.org/10.1090/S0894-0347-07-00589-9
- Published electronically: November 29, 2007
- PDF | Request permission
Abstract:
Recently A. Schrijver derived new upper bounds for binary codes using semidefinite programming. In this paper we adapt this approach to codes on the unit sphere and we compute new upper bounds for the kissing number in several dimensions. In particular our computations give the (known) values for the cases $n = 3, 4, 8, 24$.References
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- Brian Borchers, CSDP, a C library for semidefinite programming, Optim. Methods Softw. 11/12 (1999), no. 1-4, 613–623. Interior point methods. MR 1778432, DOI 10.1080/10556789908805765
- Eiichi Bannai and N. J. A. Sloane, Uniqueness of certain spherical codes, Canadian J. Math. 33 (1981), no. 2, 437–449. MR 617634, DOI 10.4153/CJM-1981-038-7
- Károly Böröczky and László Szabó, Arrangements of 13 points on a sphere, Discrete geometry, Monogr. Textbooks Pure Appl. Math., vol. 253, Dekker, New York, 2003, pp. 111–184. MR 2034713
- K. Böröczky and L. Szabó, Arrangements of 14, 15, 16 and 17 points on a sphere, Studia Sci. Math. Hungar. 40 (2003), no. 4, 407–421. MR 2037326, DOI 10.1556/SScMath.40.2003.4.3
- Bill Casselman, The difficulties of kissing in three dimensions, Notices Amer. Math. Soc. 51 (2004), no. 8, 884–885. MR 2145822
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1988. With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 920369, DOI 10.1007/978-1-4757-2016-7
- P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10 (1973), vi+97. MR 384310
- P. Delsarte, J. M. Goethals, and J. J. Seidel, Spherical codes and designs, Geometriae Dedicata 6 (1977), no. 3, 363–388. MR 485471, DOI 10.1007/bf03187604
- R. J. Duffin, Infinite programs, Linear inequalities and related systems, Ann. of Math. Stud., no. 38, Princeton Univ. Press, Princeton, NJ, 1956, pp. 157–170. MR 87573
- Dion Gijswijt, Alexander Schrijver, and Hajime Tanaka, New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming, J. Combin. Theory Ser. A 113 (2006), no. 8, 1719–1731. MR 2269550, DOI 10.1016/j.jcta.2006.03.010 KL G.A. Kabatiansky, V.I. Levenshtein, Bounds for packings on a sphere and in space, Problems of Information Transmission 14 (1978), 1–17.
- Jean B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim. 11 (2000/01), no. 3, 796–817. MR 1814045, DOI 10.1137/S1052623400366802
- V. I. Levenšteĭn, Boundaries for packings in $n$-dimensional Euclidean space, Dokl. Akad. Nauk SSSR 245 (1979), no. 6, 1299–1303 (Russian). MR 529659 M O.R. Musin, The kissing number in four dimensions, to appear in Annals of Mathematics.
- A. M. Odlyzko and N. J. A. Sloane, New bounds on the number of unit spheres that can touch a unit sphere in $n$ dimensions, J. Combin. Theory Ser. A 26 (1979), no. 2, 210–214. MR 530296, DOI 10.1016/0097-3165(79)90074-8
- Pablo A. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Math. Program. 96 (2003), no. 2, Ser. B, 293–320. Algebraic and geometric methods in discrete optimization. MR 1993050, DOI 10.1007/s10107-003-0387-5 Pf F. Pfender, Improved Delsarte bounds for spherical codes in small dimensions, J. Combin. Theory Ser. A 114 (2007), 1133–1147.
- Florian Pfender and Günter M. Ziegler, Kissing numbers, sphere packings, and some unexpected proofs, Notices Amer. Math. Soc. 51 (2004), no. 8, 873–883. MR 2145821
- Mihai Putinar, Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J. 42 (1993), no. 3, 969–984. MR 1254128, DOI 10.1512/iumj.1993.42.42045
- M. A. Vsemirnov and M. G. Rzhevskiĭ, An upper bound for the contact number in dimension 9, Uspekhi Mat. Nauk 57 (2002), no. 5(347), 149–150 (Russian); English transl., Russian Math. Surveys 57 (2002), no. 5, 1015–1016. MR 1992089, DOI 10.1070/RM2002v057n05ABEH000559
- Alexander Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory 51 (2005), no. 8, 2859–2866. MR 2236252, DOI 10.1109/TIT.2005.851748
- K. Schütte and B. L. van der Waerden, Das Problem der dreizehn Kugeln, Math. Ann. 125 (1953), 325–334 (German). MR 53537, DOI 10.1007/BF01343127
- N. Ja. Vilenkin and A. U. Klimyk, Representation of Lie groups and special functions. Vol. 2, Mathematics and its Applications (Soviet Series), vol. 74, Kluwer Academic Publishers Group, Dordrecht, 1993. Class I representations, special functions, and integral transforms; Translated from the Russian by V. A. Groza and A. A. Groza. MR 1220225, DOI 10.1007/978-94-017-2883-6
Bibliographic Information
- Christine Bachoc
- Affiliation: Laboratoire A2X, Université Bordeaux I, 351, cours de la Libération, 33405 Talence, France
- Email: bachoc@math.u-bordeaux1.fr
- Frank Vallentin
- Affiliation: Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
- Email: f.vallentin@cwi.nl
- Received by editor(s): October 17, 2006
- Published electronically: November 29, 2007
- Additional Notes: The second author was supported by the Netherlands Organization for Scientific Research under grant NWO 639.032.203 and by the Deutsche Forschungsgemeinschaft (DFG) under grant SCHU 1503/4-1.
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 21 (2008), 909-924
- MSC (2000): Primary 52C17, 90C22
- DOI: https://doi.org/10.1090/S0894-0347-07-00589-9
- MathSciNet review: 2393433