Link Floer homology and the Thurston norm
HTML articles powered by AMS MathViewer
- by Peter Ozsváth and Zoltán Szabó;
- J. Amer. Math. Soc. 21 (2008), 671-709
- DOI: https://doi.org/10.1090/S0894-0347-08-00586-9
- Published electronically: January 22, 2008
- PDF | Request permission
Abstract:
We show that link Floer homology detects the Thurston norm of a link complement. As an application, we show that the Thurston polytope of an alternating link is dual to the Newton polytope of its multi-variable Alexander polynomial. To illustrate these techniques, we also compute the Thurston polytopes of several specific link complements.References
- Kunio Murasugi, On the genus of the alternating knot. I, II, J. Math. Soc. Japan 10 (1958), 94–105, 235–248. MR 99664, DOI 10.2969/jmsj/01010094
- S. K. Donaldson, Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999), no. 2, 205–236. MR 1802722, DOI 10.4310/jdg/1214425535
- David Eisenbud and Walter Neumann, Three-dimensional link theory and invariants of plane curve singularities, Annals of Mathematics Studies, vol. 110, Princeton University Press, Princeton, NJ, 1985. MR 817982
- John B. Etnyre, On symplectic fillings, Algebr. Geom. Topol. 4 (2004), 73–80. MR 2023278, DOI 10.2140/agt.2004.4.73
- Yakov M. Eliashberg and William P. Thurston, Confoliations, University Lecture Series, vol. 13, American Mathematical Society, Providence, RI, 1998. MR 1483314, DOI 10.1090/ulect/013
- John B. Etnyre, On symplectic fillings, Algebr. Geom. Topol. 4 (2004), 73–80. MR 2023278, DOI 10.2140/agt.2004.4.73
- Andreas Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), no. 3, 513–547. MR 965228
- Andreas Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988), no. 6, 775–813. MR 948771, DOI 10.1002/cpa.3160410603
- David Gabai, Foliations and the topology of $3$-manifolds, J. Differential Geom. 18 (1983), no. 3, 445–503. MR 723813
- David Gabai, Foliations and the topology of $3$-manifolds. II, J. Differential Geom. 26 (1987), no. 3, 461–478. MR 910017
- Matthew Hedden, On knot Floer homology and cabling, Algebr. Geom. Topol. 5 (2005), 1197–1222. MR 2171808, DOI 10.2140/agt.2005.5.1197 KMbook P. B. Kronheimer and T. S. Mrowka. Floer homology for Seiberg-Witten Monopoles. Preprint.
- P. B. Kronheimer and T. S. Mrowka, Scalar curvature and the Thurston norm, Math. Res. Lett. 4 (1997), no. 6, 931–937. MR 1492131, DOI 10.4310/MRL.1997.v4.n6.a12
- P. Kronheimer, T. Mrowka, P. Ozsváth, and Z. Szabó, Monopoles and lens space surgeries, Ann. of Math. (2) 165 (2007), no. 2, 457–546. MR 2299739, DOI 10.4007/annals.2007.165.457
- Curtis T. McMullen, The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 2, 153–171 (English, with English and French summaries). MR 1914929, DOI 10.1016/S0012-9593(02)01086-8
- Kunio Murasugi, On the Alexander polynomial of alternating algebraic knots, J. Austral. Math. Soc. Ser. A 39 (1985), no. 3, 317–333. MR 802722, DOI 10.1017/S1446788700026094
- Yi Ni, A note on knot Floer homology of links, Geom. Topol. 10 (2006), 695–713. MR 2240902, DOI 10.2140/gt.2006.10.695
- Yi Ni, Sutured Heegaard diagrams for knots, Algebr. Geom. Topol. 6 (2006), 513–537. MR 2220687, DOI 10.2140/agt.2006.6.513
- Peter Ozsváth and Zoltán Szabó, Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003), 225–254. MR 1988285, DOI 10.2140/gt.2003.7.225
- Peter Ozsváth and Zoltán Szabó, Heegaard diagrams and holomorphic disks, Different faces of geometry, Int. Math. Ser. (N. Y.), vol. 3, Kluwer/Plenum, New York, 2004, pp. 301–348. MR 2102999, DOI 10.1007/0-306-48658-X_{7}
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004), 311–334. MR 2023281, DOI 10.2140/gt.2004.8.311
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58–116. MR 2065507, DOI 10.1016/j.aim.2003.05.001
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027–1158. MR 2113019, DOI 10.4007/annals.2004.159.1027
- Peter Ozsváth and Zoltán Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005), no. 1, 39–61. MR 2153455, DOI 10.1215/S0012-7094-04-12912-4 Links P. S. Ozsváth and Z. Szabó. Holomorphic disks, link invariants, and the multi-variable Alexander polynomial. math.GT/0512286, 2005. RasmussenThesis J. A. Rasmussen. Floer homology and knot complements. PhD thesis, Harvard University, 2003.
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, vol. 7, Publish or Perish, Inc., Houston, TX, 1990. Corrected reprint of the 1976 original. MR 1277811
- William P. Thurston, A norm for the homology of $3$-manifolds, Mem. Amer. Math. Soc. 59 (1986), no. 339, i–vi and 99–130. MR 823443
- Vladimir Turaev, Torsions of 3-manifolds, Invariants of knots and 3-manifolds (Kyoto, 2001) Geom. Topol. Monogr., vol. 4, Geom. Topol. Publ., Coventry, 2002, pp. 295–302. MR 2002617, DOI 10.2140/gtm.2002.4.295
Bibliographic Information
- Peter Ozsváth
- Affiliation: Department of Mathematics, Columbia University, New York, New York 10027
- Email: petero@math.columbia.edu
- Zoltán Szabó
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- Email: szabo@math.princeton.edu
- Received by editor(s): February 6, 2006
- Published electronically: January 22, 2008
- Additional Notes: The first author was supported by NSF grant number DMS-050581
The second author was supported by NSF grant number DMS-0406155 - © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 21 (2008), 671-709
- MSC (2000): Primary 53Dxx, 57Rxx, 57Mxx
- DOI: https://doi.org/10.1090/S0894-0347-08-00586-9
- MathSciNet review: 2393424