Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries
Authors:
L. A. Caffarelli and Fang-Hua Lin
Journal:
J. Amer. Math. Soc. 21 (2008), 847-862
MSC (2000):
Primary 35B25, 35P30, 49N60
DOI:
https://doi.org/10.1090/S0894-0347-08-00593-6
Published electronically:
February 12, 2008
MathSciNet review:
2393430
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Here we study the asymptotic limits of solutions of some singularly perturbed elliptic systems. The limiting problems involve multiple valued harmonic functions or, in general, harmonic maps to singular spaces and free interfaces between supports of various components of the maps. The main results of the paper are the uniform Lipschitz regularity of solutions as well as the regularity of free interfaces.
- F. J. Almgren Jr., $Q$ valued functions minimizing Dirichlet’s integral and the regularity of area minimizing rectifiable currents up to codimension two, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 2, 327–328. MR 684900, DOI https://doi.org/10.1090/S0273-0979-1983-15106-6
- Dorin Bucur, Giuseppe Buttazzo, and Antoine Henrot, Existence results for some optimal partition problems, Adv. Math. Sci. Appl. 8 (1998), no. 2, 571–579. MR 1657219 [BS]BS Burke, S. P.; Schuman, T. E. W. Diffusion flames. Industr. Eng. Chem. 20 (1928), no. 10, 998–1004.
- Giuseppe Buttazzo and Gianni Dal Maso, Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions, Appl. Math. Optim. 23 (1991), no. 1, 17–49. MR 1076053, DOI https://doi.org/10.1007/BF01442391
- Giuseppe Buttazzo and Gianni Dal Maso, An existence result for a class of shape optimization problems, Arch. Rational Mech. Anal. 122 (1993), no. 2, 183–195. MR 1217590, DOI https://doi.org/10.1007/BF00378167
- Dorin Bucur and Jean-Paul Zolésio, $N$-dimensional shape optimization under capacitary constraint, J. Differential Equations 123 (1995), no. 2, 504–522. MR 1362884, DOI https://doi.org/10.1006/jdeq.1995.1171
- L. A. Cafferelli and Fang Hua Lin, An optimal partition problem for eigenvalues, J. Sci. Comput. 31 (2007), no. 1-2, 5–18. MR 2304268, DOI https://doi.org/10.1007/s10915-006-9114-8 [CL2]C Caffarelli, L. A.; Lin, F. Viscosity approach to a partition problem, preprint.
- Shu-Ming Chang, Chang-Shou Lin, Tai-Chia Lin, and Wen-Wei Lin, Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates, Phys. D 196 (2004), no. 3-4, 341–361. MR 2090357, DOI https://doi.org/10.1016/j.physd.2004.06.002
- Luis A. Caffarelli and Jean-Michel Roquejoffre, Uniform Hölder estimates in a class of elliptic systems and applications to singular limits in models for diffusion flames, Arch. Ration. Mech. Anal. 183 (2007), no. 3, 457–487. MR 2278412, DOI https://doi.org/10.1007/s00205-006-0013-9
- M. Conti, S. Terracini, and G. Verzini, Nehari’s problem and competing species systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), no. 6, 871–888 (English, with English and French summaries). MR 1939088, DOI https://doi.org/10.1016/S0294-1449%2802%2900104-X
- M. Conti, S. Terracini, and G. Verzini, An optimal partition problem related to nonlinear eigenvalues, J. Funct. Anal. 198 (2003), no. 1, 160–196. MR 1962357, DOI https://doi.org/10.1016/S0022-1236%2802%2900105-2
- Monica Conti, Susanna Terracini, and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math. 195 (2005), no. 2, 524–560. MR 2146353, DOI https://doi.org/10.1016/j.aim.2004.08.006
- Monica Conti, Susanna Terracini, and Gianmaria Verzini, A variational problem for the spatial segregation of reaction-diffusion systems, Indiana Univ. Math. J. 54 (2005), no. 3, 779–815. MR 2151234, DOI https://doi.org/10.1512/iumj.2005.54.2506
- Nicola Garofalo and Fang-Hua Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J. 35 (1986), no. 2, 245–268. MR 833393, DOI https://doi.org/10.1512/iumj.1986.35.35015
- Peter W. Jones, A geometric localization theorem, Adv. in Math. 46 (1982), no. 1, 71–79. MR 676987, DOI https://doi.org/10.1016/0001-8708%2882%2990054-8
- Fang-Hua Lin, Static and moving vortices in Ginzburg-Landau theories, Nonlinear partial differential equations in geometry and physics (Knoxville, TN, 1995) Progr. Nonlinear Differential Equations Appl., vol. 29, Birkhäuser, Basel, 1997, pp. 71–111. MR 1437152
- Fanghua Lin and Xiaoping Yang, Geometric measure theory—an introduction, Advanced Mathematics (Beijing/Boston), vol. 1, Science Press Beijing, Beijing; International Press, Boston, MA, 2002. MR 2030862
- Fang-Hua Lin, Nodal sets of solutions of elliptic and parabolic equations, Comm. Pure Appl. Math. 44 (1991), no. 3, 287–308. MR 1090434, DOI https://doi.org/10.1002/cpa.3160440303
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 0202511
- Richard M. Schoen, Analytic aspects of the harmonic map problem, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983) Math. Sci. Res. Inst. Publ., vol. 2, Springer, New York, 1984, pp. 321–358. MR 765241, DOI https://doi.org/10.1007/978-1-4612-1110-5_17
- V. Šverák, On optimal shape design, J. Math. Pures Appl. (9) 72 (1993), no. 6, 537–551. MR 1249408
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 35B25, 35P30, 49N60
Retrieve articles in all journals with MSC (2000): 35B25, 35P30, 49N60
Additional Information
L. A. Caffarelli
Affiliation:
Department of Mathematics, University of Texas at Austin, Austin, Texas 78712
MR Author ID:
44175
Email:
caffarel@math.utexas.edu
Fang-Hua Lin
Affiliation:
Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012
MR Author ID:
114150
Email:
linf@cims.nyu.edu
Keywords:
Singular limit,
regularity of free interface,
multiple-valued harmonic functions,
harmonic maps.
Received by editor(s):
August 24, 2006
Published electronically:
February 12, 2008
Article copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.