Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries
HTML articles powered by AMS MathViewer
- by L. A. Caffarelli and Fang-Hua Lin;
- J. Amer. Math. Soc. 21 (2008), 847-862
- DOI: https://doi.org/10.1090/S0894-0347-08-00593-6
- Published electronically: February 12, 2008
- PDF | Request permission
Abstract:
Here we study the asymptotic limits of solutions of some singularly perturbed elliptic systems. The limiting problems involve multiple valued harmonic functions or, in general, harmonic maps to singular spaces and free interfaces between supports of various components of the maps. The main results of the paper are the uniform Lipschitz regularity of solutions as well as the regularity of free interfaces.References
- F. J. Almgren Jr., $Q$ valued functions minimizing Dirichlet’s integral and the regularity of area minimizing rectifiable currents up to codimension two, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 2, 327–328. MR 684900, DOI 10.1090/S0273-0979-1983-15106-6
- Dorin Bucur, Giuseppe Buttazzo, and Antoine Henrot, Existence results for some optimal partition problems, Adv. Math. Sci. Appl. 8 (1998), no. 2, 571–579. MR 1657219 [BS]BS Burke, S. P.; Schuman, T. E. W. Diffusion flames. Industr. Eng. Chem. 20 (1928), no. 10, 998–1004.
- Giuseppe Buttazzo and Gianni Dal Maso, Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions, Appl. Math. Optim. 23 (1991), no. 1, 17–49. MR 1076053, DOI 10.1007/BF01442391
- Giuseppe Buttazzo and Gianni Dal Maso, An existence result for a class of shape optimization problems, Arch. Rational Mech. Anal. 122 (1993), no. 2, 183–195. MR 1217590, DOI 10.1007/BF00378167
- Dorin Bucur and Jean-Paul Zolésio, $N$-dimensional shape optimization under capacitary constraint, J. Differential Equations 123 (1995), no. 2, 504–522. MR 1362884, DOI 10.1006/jdeq.1995.1171
- L. A. Cafferelli and Fang Hua Lin, An optimal partition problem for eigenvalues, J. Sci. Comput. 31 (2007), no. 1-2, 5–18. MR 2304268, DOI 10.1007/s10915-006-9114-8 [CL2]C Caffarelli, L. A.; Lin, F. Viscosity approach to a partition problem, preprint.
- Shu-Ming Chang, Chang-Shou Lin, Tai-Chia Lin, and Wen-Wei Lin, Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates, Phys. D 196 (2004), no. 3-4, 341–361. MR 2090357, DOI 10.1016/j.physd.2004.06.002
- Luis A. Caffarelli and Jean-Michel Roquejoffre, Uniform Hölder estimates in a class of elliptic systems and applications to singular limits in models for diffusion flames, Arch. Ration. Mech. Anal. 183 (2007), no. 3, 457–487. MR 2278412, DOI 10.1007/s00205-006-0013-9
- M. Conti, S. Terracini, and G. Verzini, Nehari’s problem and competing species systems, Ann. Inst. H. Poincaré C Anal. Non Linéaire 19 (2002), no. 6, 871–888 (English, with English and French summaries). MR 1939088, DOI 10.1016/S0294-1449(02)00104-X
- M. Conti, S. Terracini, and G. Verzini, An optimal partition problem related to nonlinear eigenvalues, J. Funct. Anal. 198 (2003), no. 1, 160–196. MR 1962357, DOI 10.1016/S0022-1236(02)00105-2
- Monica Conti, Susanna Terracini, and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math. 195 (2005), no. 2, 524–560. MR 2146353, DOI 10.1016/j.aim.2004.08.006
- Monica Conti, Susanna Terracini, and Gianmaria Verzini, A variational problem for the spatial segregation of reaction-diffusion systems, Indiana Univ. Math. J. 54 (2005), no. 3, 779–815. MR 2151234, DOI 10.1512/iumj.2005.54.2506
- Nicola Garofalo and Fang-Hua Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J. 35 (1986), no. 2, 245–268. MR 833393, DOI 10.1512/iumj.1986.35.35015
- Peter W. Jones, A geometric localization theorem, Adv. in Math. 46 (1982), no. 1, 71–79. MR 676987, DOI 10.1016/0001-8708(82)90054-8
- Fang-Hua Lin, Static and moving vortices in Ginzburg-Landau theories, Nonlinear partial differential equations in geometry and physics (Knoxville, TN, 1995) Progr. Nonlinear Differential Equations Appl., vol. 29, Birkhäuser, Basel, 1997, pp. 71–111. MR 1437152
- Fanghua Lin and Xiaoping Yang, Geometric measure theory—an introduction, Advanced Mathematics (Beijing/Boston), vol. 1, Science Press Beijing, Beijing; International Press, Boston, MA, 2002. MR 2030862
- Fang-Hua Lin, Nodal sets of solutions of elliptic and parabolic equations, Comm. Pure Appl. Math. 44 (1991), no. 3, 287–308. MR 1090434, DOI 10.1002/cpa.3160440303
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 202511, DOI 10.1007/978-3-540-69952-1
- Richard M. Schoen, Analytic aspects of the harmonic map problem, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983) Math. Sci. Res. Inst. Publ., vol. 2, Springer, New York, 1984, pp. 321–358. MR 765241, DOI 10.1007/978-1-4612-1110-5_{1}7
- V. Šverák, On optimal shape design, J. Math. Pures Appl. (9) 72 (1993), no. 6, 537–551. MR 1249408
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3
Bibliographic Information
- L. A. Caffarelli
- Affiliation: Department of Mathematics, University of Texas at Austin, Austin, Texas 78712
- MR Author ID: 44175
- Email: caffarel@math.utexas.edu
- Fang-Hua Lin
- Affiliation: Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012
- MR Author ID: 114150
- Email: linf@cims.nyu.edu
- Received by editor(s): August 24, 2006
- Published electronically: February 12, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 21 (2008), 847-862
- MSC (2000): Primary 35B25, 35P30, 49N60
- DOI: https://doi.org/10.1090/S0894-0347-08-00593-6
- MathSciNet review: 2393430