## The noncommutative Choquet boundary

HTML articles powered by AMS MathViewer

- by William Arveson
- J. Amer. Math. Soc.
**21**(2008), 1065-1084 - DOI: https://doi.org/10.1090/S0894-0347-07-00570-X
- Published electronically: April 23, 2007
- PDF | Request permission

## Abstract:

Let $S$ be an operator system–a self-adjoint linear subspace of a unital $C^*$-algebra $A$ such that $\mathbf 1\in S$ and $A=C^*(S)$ is generated by $S$. A*boundary representation*for $S$ is an irreducible representation $\pi$ of $C^*(S)$ on a Hilbert space with the property that $\pi \restriction _S$ has a unique completely positive extension to $C^*(S)$. The set $\partial _S$ of all (unitary equivalence classes of) boundary representations is the noncommutative counterpart of the Choquet boundary of a function system $S\subseteq C(X)$ that separates points of $X$. It is known that the closure of the Choquet boundary of a function system $S$ is the Šilov boundary of $X$ relative to $S$. The corresponding noncommutative problem of whether every operator system has “sufficiently many" boundary representations was formulated in 1969, but has remained unsolved despite progress on related issues. In particular, it was unknown if $\partial _S\neq \emptyset$ for generic $S$. In this paper we show that every separable operator system has sufficiently many boundary representations. Our methods use separability in an essential way.

## References

- Jim Agler,
*An abstract approach to model theory*, Surveys of some recent results in operator theory, Vol. II, Pitman Res. Notes Math. Ser., vol. 192, Longman Sci. Tech., Harlow, 1988, pp. 1–23. MR**976842** - William B. Arveson,
*Subalgebras of $C^{\ast }$-algebras*, Acta Math.**123**(1969), 141–224. MR**253059**, DOI 10.1007/BF02392388 - William Arveson,
*Subalgebras of $C^{\ast }$-algebras. II*, Acta Math.**128**(1972), no. 3-4, 271–308. MR**394232**, DOI 10.1007/BF02392166 - William Arveson,
*An invitation to $C^*$-algebras*, Graduate Texts in Mathematics, No. 39, Springer-Verlag, New York-Heidelberg, 1976. MR**0512360**, DOI 10.1007/978-1-4612-6371-5
[Arv03]arvUnExt W. Arveson. Notes on the unique extension property. - Charles Akemann and Nik Weaver,
*Consistency of a counterexample to Naimark’s problem*, Proc. Natl. Acad. Sci. USA**101**(2004), no. 20, 7522–7525. MR**2057719**, DOI 10.1073/pnas.0401489101 - David Blackwell,
*A Borel set not containing a graph*, Ann. Math. Statist.**39**(1968), 1345–1347. MR**229451**, DOI 10.1214/aoms/1177698260 - David P. Blecher,
*The Shilov boundary of an operator space and the characterization theorems*, J. Funct. Anal.**182**(2001), no. 2, 280–343. MR**1828796**, DOI 10.1006/jfan.2000.3734 - David P. Blecher and Christian Le Merdy,
*Operator algebras and their modules—an operator space approach*, London Mathematical Society Monographs. New Series, vol. 30, The Clarendon Press, Oxford University Press, Oxford, 2004. Oxford Science Publications. MR**2111973**, DOI 10.1093/acprof:oso/9780198526599.001.0001 - Jacques Dixmier,
*Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann)*, Cahiers Scientifiques, Fasc. XXV, Gauthier-Villars, Paris, 1957 (French). MR**0094722** - Michael A. Dritschel and Scott A. McCullough,
*Boundary representations for families of representations of operator algebras and spaces*, J. Operator Theory**53**(2005), no. 1, 159–167. MR**2132691** - Masamichi Hamana,
*Injective envelopes of $C^{\ast }$-algebras*, J. Math. Soc. Japan**31**(1979), no. 1, 181–197. MR**519044**, DOI 10.2969/jmsj/03110181 - Masamichi Hamana,
*Injective envelopes of operator systems*, Publ. Res. Inst. Math. Sci.**15**(1979), no. 3, 773–785. MR**566081**, DOI 10.2977/prims/1195187876
[Lus30]LusSel N. Lusin. Sur le probleme de M. J. Hadamard d’uniformisation des ensembles. - Paul S. Muhly and Baruch Solel,
*An algebraic characterization of boundary representations*, Nonselfadjoint operator algebras, operator theory, and related topics, Oper. Theory Adv. Appl., vol. 104, Birkhäuser, Basel, 1998, pp. 189–196. MR**1639657**
[Nov31]NovSel P. Novikoff. Sur les fonctions implicites measurables B. - Vern Paulsen,
*Completely bounded maps and operator algebras*, Cambridge Studies in Advanced Mathematics, vol. 78, Cambridge University Press, Cambridge, 2002. MR**1976867** - Robert R. Phelps,
*Lectures on Choquet’s theorem*, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR**0193470** - Robert R. Phelps,
*Lectures on Choquet’s theorem*, 2nd ed., Lecture Notes in Mathematics, vol. 1757, Springer-Verlag, Berlin, 2001. MR**1835574**, DOI 10.1007/b76887

*Unpublished*, 2003. Available from http://math.berkeley.edu/~arveson/Dvi/unExt.pdf.

*Comtes Rendus Acad. Sci. Paris*, 190:349–351, 1930.

*Fund. Math.*, 17:8–25, 1931.

## Bibliographic Information

**William Arveson**- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- Email: arveson@math.berkeley.edu
- Received by editor(s): January 12, 2007
- Published electronically: April 23, 2007
- © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc.
**21**(2008), 1065-1084 - MSC (2000): Primary 46L07; Secondary 46L52
- DOI: https://doi.org/10.1090/S0894-0347-07-00570-X
- MathSciNet review: 2425180