Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Disk enumeration on the quintic 3-fold
HTML articles powered by AMS MathViewer

by R. Pandharipande, J. Solomon and J. Walcher
J. Amer. Math. Soc. 21 (2008), 1169-1209
Published electronically: February 12, 2008


Holomorphic disk invariants with boundary in the real Lagrangian of a quintic 3-fold are calculated by localization and proven mirror transforms. A careful discussion of the underlying virtual intersection theory is included. The generating function for the disk invariants is shown to satisfy an extension of the Picard-Fuchs differential equations associated to the mirror quintic. The Ooguri-Vafa multiple cover formula is used to define virtually enumerative disk invariants. The results may also be viewed as providing a virtual enumeration of real rational curves on the quintic.
  • Paul S. Aspinwall and David R. Morrison, Topological field theory and rational curves, Comm. Math. Phys. 151 (1993), no. 2, 245–262. MR 1204770, DOI 10.1007/BF02096768
  • cogp P. Candelas, X. de la Ossa, P. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal field theory, Nuclear Physics B359 (1991), 21-74. FOOO K. Fukaya, Y.-G. Oh, H. Ohto and K. Ono, Lagrangian intersection Floer theory, anomaly and obstruction, Kyoto University, preprint, 2006.
  • Kenji Fukaya and Kaoru Ono, Arnold conjecture and Gromov-Witten invariant, Topology 38 (1999), no. 5, 933–1048. MR 1688434, DOI 10.1016/S0040-9383(98)00042-1
  • Alexander B. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices 13 (1996), 613–663. MR 1408320, DOI 10.1155/S1073792896000414
  • g2 A. Givental, Elliptic Gromov-Witten invariants and the generalized mirror conjecture, math.AG/9803053. grzas T. Graber and E. Zaslow, Open string Gromov-Witten theory: calculation and a mirror theorem, hep-th/0109075.
  • H. Hofer, K. Wysocki, and E. Zehnder, A general Fredholm theory. I. A splicing-based differential geometry, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 841–876. MR 2341834, DOI 10.4171/JEMS/99
  • HWZ2 H. Hofer, K. Wysocki and E. Zehnder, A General Fredholm Theory II: Implicit Function Theorems, arXiv:0705.1310.
  • Sheldon Katz and Chiu-Chu Melissa Liu, Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc, Adv. Theor. Math. Phys. 5 (2001), no. 1, 1–49. MR 1894336, DOI 10.4310/ATMP.2001.v5.n1.a1
  • Maxim Kontsevich, Enumeration of rational curves via torus actions, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 335–368. MR 1363062, DOI 10.1007/978-1-4612-4264-2_{1}2
  • Maxim Kontsevich, Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 120–139. MR 1403918
  • Bong H. Lian, Kefeng Liu, and Shing-Tung Yau, Mirror principle. I, Asian J. Math. 1 (1997), no. 4, 729–763. MR 1621573, DOI 10.4310/AJM.1997.v1.n4.a5
  • melissa M. Liu, Moduli of J-holomorphic curves with Lagrangian boundary conditions and open Gromov-Witten invariants for a $S^1$-equivariant pair, math.SG/0210257.
  • Hirosi Ooguri and Cumrun Vafa, Knot invariants and topological strings, Nuclear Phys. B 577 (2000), no. 3, 419–438. MR 1765411, DOI 10.1016/S0550-3213(00)00118-8
  • Rahul Pandharipande, Rational curves on hypersurfaces (after A. Givental), Astérisque 252 (1998), Exp. No. 848, 5, 307–340. Séminaire Bourbaki. Vol. 1997/98. MR 1685628
  • Yongbin Ruan and Gang Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995), no. 2, 259–367. MR 1366548
  • SP. Seidel, personal communication based on a remark of D. Joyce and a talk of K. Fukaya at Northwestern in spring 2004. jake1 J. Solomon, Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions, math.SG/0606429. jake2 J. Solomon, Virtual manifolds, to appear. Walcher J. Walcher, Opening mirror symmetry on the quintic, hep-th/0605162.
  • Jean-Yves Welschinger, Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry, Invent. Math. 162 (2005), no. 1, 195–234. MR 2198329, DOI 10.1007/s00222-005-0445-0
  • Jean-Yves Welschinger, Spinor states of real rational curves in real algebraic convex 3-manifolds and enumerative invariants, Duke Math. J. 127 (2005), no. 1, 89–121. MR 2126497, DOI 10.1215/S0012-7094-04-12713-7
  • WWK. Wehrheim and C. Woodward, Orientations for pseudo-holomorphic quilts, preprint.
  • E. Witten, Chern-Simons gauge theory as a string theory, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 637–678. MR 1362846
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 53D45, 14N35, 14J32
  • Retrieve articles in all journals with MSC (2000): 53D45, 14N35, 14J32
Bibliographic Information
  • R. Pandharipande
  • Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
  • MR Author ID: 357813
  • Email:
  • J. Solomon
  • Affiliation: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
  • Address at time of publication: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
  • Email:,
  • J. Walcher
  • Affiliation: School of Natural Science, Institute for Advanced Study, Princeton, New Jersey 08540
  • MR Author ID: 656979
  • Email:
  • Received by editor(s): May 29, 2007
  • Published electronically: February 12, 2008
  • © Copyright 2008 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: J. Amer. Math. Soc. 21 (2008), 1169-1209
  • MSC (2000): Primary 53D45, 14N35; Secondary 14J32
  • DOI:
  • MathSciNet review: 2425184