Manifolds with $1/4$-pinched curvature are space forms
HTML articles powered by AMS MathViewer
- by Simon Brendle and Richard Schoen PDF
- J. Amer. Math. Soc. 22 (2009), 287-307 Request permission
Abstract:
Let $(M,g_0)$ be a compact Riemannian manifold with pointwise $1/4$-pinched sectional curvatures. We show that the Ricci flow deforms $g_0$ to a constant curvature metric. The proof uses the fact, also established in this paper, that positive isotropic curvature is preserved by the Ricci flow in all dimensions. We also rely on earlier work of Hamilton and of Böhm and Wilking.References
- Andrews-Nguyen B. Andrews and H. Nguyen, Four-manifolds with $1/4$-pinched flag curvatures, preprint (2007).
- M. Berger, Les variétés Riemanniennes $(1/4)$-pincées, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 14 (1960), 161–170 (French). MR 140054 Bohm-Wilking C. Böhm and B. Wilking, Manifolds with positive curvature operator are space forms, Ann. of Math. 167, 1079–1097 (2008).
- Simon Brendle and Richard M. Schoen, Classification of manifolds with weakly $1/4$-pinched curvatures, Acta Math. 200 (2008), no. 1, 1–13. MR 2386107, DOI 10.1007/s11511-008-0022-7
- Bing-Long Chen and Xi-Ping Zhu, Ricci flow with surgery on four-manifolds with positive isotropic curvature, J. Differential Geom. 74 (2006), no. 2, 177–264. MR 2258799
- Haiwen Chen, Pointwise $\frac 14$-pinched $4$-manifolds, Ann. Global Anal. Geom. 9 (1991), no. 2, 161–176. MR 1136125, DOI 10.1007/BF00776854
- Ailana M. Fraser, Fundamental groups of manifolds with positive isotropic curvature, Ann. of Math. (2) 158 (2003), no. 1, 345–354. MR 1999925, DOI 10.4007/annals.2003.158.345
- Detlef Gromoll, Differenzierbare Strukturen und Metriken positiver Krümmung auf Sphären, Math. Ann. 164 (1966), 353–371 (German). MR 196754, DOI 10.1007/BF01350046
- Karsten Grove, Hermann Karcher, and Ernst A. Ruh, Group actions and curvature, Invent. Math. 23 (1974), 31–48. MR 385750, DOI 10.1007/BF01405201
- Karsten Grove, Hermann Karcher, and Ernst A. Ruh, Jacobi fields and Finsler metrics on compact Lie groups with an application to differentiable pinching problems, Math. Ann. 211 (1974), 7–21. MR 355917, DOI 10.1007/BF01344138
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306. MR 664497
- Richard S. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986), no. 2, 153–179. MR 862046
- Richard S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) Int. Press, Cambridge, MA, 1995, pp. 7–136. MR 1375255
- Richard S. Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997), no. 1, 1–92. MR 1456308, DOI 10.4310/CAG.1997.v5.n1.a1
- Gerhard Huisken, Ricci deformation of the metric on a Riemannian manifold, J. Differential Geom. 21 (1985), no. 1, 47–62. MR 806701
- Hans-Christoph Im Hof and Ernst A. Ruh, An equivariant pinching theorem, Comment. Math. Helv. 50 (1975), no. 3, 389–401. MR 385751, DOI 10.1007/BF02565758
- Hermann Karcher, A short proof of Berger’s curvature tensor estimates, Proc. Amer. Math. Soc. 26 (1970), 642–644. MR 270304, DOI 10.1090/S0002-9939-1970-0270304-5
- Wilhelm Klingenberg, Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung, Comment. Math. Helv. 35 (1961), 47–54 (German). MR 139120, DOI 10.1007/BF02567004
- Christophe Margerin, Pointwise pinched manifolds are space forms, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984) Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., Providence, RI, 1986, pp. 307–328. MR 840282, DOI 10.1090/pspum/044/840282
- Mario J. Micallef and John Douglas Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), no. 1, 199–227. MR 924677, DOI 10.2307/1971420
- Mario J. Micallef and McKenzie Y. Wang, Metrics with nonnegative isotropic curvature, Duke Math. J. 72 (1993), no. 3, 649–672. MR 1253619, DOI 10.1215/S0012-7094-93-07224-9 Nguyen H. Nguyen, Invariant curvature cones and the Ricci flow, PhD thesis, Australian National University (2007).
- Seiki Nishikawa, Deformation of Riemannian metrics and manifolds with bounded curvature ratios, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984) Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., Providence, RI, 1986, pp. 343–352. MR 840284, DOI 10.1090/pspum/044/840284 Perelman1 G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arxiv:0211159. Perelman2 G. Perelman, Ricci flow with surgery on three-manifolds, arxiv:0303109.
- H. E. Rauch, A contribution to differential geometry in the large, Ann. of Math. (2) 54 (1951), 38–55. MR 42765, DOI 10.2307/1969309
- Ernst A. Ruh, Krümmung und differenzierbare Struktur auf Sphären. II, Math. Ann. 205 (1973), 113–129 (German). MR 370429, DOI 10.1007/BF01350841
- Ernst A. Ruh, Riemannian manifolds with bounded curvature ratios, J. Differential Geometry 17 (1982), no. 4, 643–653 (1983). MR 683169
- M. Sugimoto and K. Shiohama, On the differentiable pinching problem, Math. Ann. 195 (1971), 1–16. Improved by H Karcher. MR 290291, DOI 10.1007/BF02059412
Additional Information
- Simon Brendle
- Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
- MR Author ID: 655348
- Richard Schoen
- Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
- Received by editor(s): May 7, 2007
- Published electronically: July 17, 2008
- Additional Notes: The first author was partially supported by a Sloan Foundation Fellowship and by NSF grant DMS-0605223
The second author was partially supported by NSF grant DMS-0604960. - © Copyright 2008 American Mathematical Society
- Journal: J. Amer. Math. Soc. 22 (2009), 287-307
- MSC (2000): Primary 53C20; Secondary 53C44
- DOI: https://doi.org/10.1090/S0894-0347-08-00613-9
- MathSciNet review: 2449060