Word maps and Waring type problems
HTML articles powered by AMS MathViewer
- by Michael Larsen and Aner Shalev;
- J. Amer. Math. Soc. 22 (2009), 437-466
- DOI: https://doi.org/10.1090/S0894-0347-08-00615-2
- Published electronically: September 12, 2008
- PDF | Request permission
Abstract:
Waring’s classical problem deals with expressing every natural number as a sum of $g(k)$ $k$th powers. Recently there has been considerable interest in similar questions for nonabelian groups and simple groups in particular. Here the $k$th power word is replaced by an arbitrary group word $w \ne 1$, and the goal is to express group elements as short products of values of $w$.
We give a best possible and somewhat surprising solution for this Waring type problem for various finite simple groups, showing that a product of length two suffices to express all elements. We also show that the set of values of $w$ is very large, improving various results obtained so far.
Along the way we also obtain new results of independent interest on character values and class squares in symmetric groups.
Our methods involve algebraic geometry, representation theory, probabilistic arguments, as well as results from analytic number theory, including three primes theorems (approximating Goldbach’s Conjecture).
References
- Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, Vol. 305, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. MR 354654
- Z. Arad and M. Herzog (eds.), Products of conjugacy classes in groups, Lecture Notes in Mathematics, vol. 1112, Springer-Verlag, Berlin, 1985. MR 783067, DOI 10.1007/BFb0072284
- Raymond Ayoub, On Rademacher’s extension of the Goldbach-Vinogradoff theorem, Trans. Amer. Math. Soc. 74 (1953), 482–491. MR 53960, DOI 10.1090/S0002-9947-1953-0053960-0
- R. C. Baker, G. Harman, and J. Pintz, The exceptional set for Goldbach’s problem in short intervals, Sieve methods, exponential sums, and their applications in number theory (Cardiff, 1995) London Math. Soc. Lecture Note Ser., vol. 237, Cambridge Univ. Press, Cambridge, 1997, pp. 1–54. MR 1635718, DOI 10.1017/CBO9780511526091.004
- Edward Bertram, Even permutations as a product of two conjugate cycles, J. Combinatorial Theory Ser. A 12 (1972), 368–380. MR 297853, DOI 10.1016/0097-3165(72)90102-1
- A. Borel, On free subgroups of semisimple groups, Enseign. Math. (2) 29 (1983), no. 1-2, 151–164. MR 702738
- J. L. Brenner, Covering theorems for finite nonabelian simple groups. IX. How the square of a class with two nontrivial orbits in $S_{n}$ covers $A_{n}$, Ars Combin. 4 (1977), 151–176. MR 576549
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520, DOI 10.1007/BF02684780
- Erich W. Ellers, Nikolai Gordeev, and Marcel Herzog, Covering numbers for Chevalley groups, Israel J. Math. 111 (1999), 339–372. MR 1710745, DOI 10.1007/BF02810691
- P. Erdős and P. Turán, On some problems of a statistical group-theory. I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 (1965), 175–186 (1965). MR 184994, DOI 10.1007/BF00536750
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. 20 (1964), 259 (French). MR 173675
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 199181
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 217086
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- Dale H. Husemoller, Ramified coverings of Riemann surfaces, Duke Math. J. 29 (1962), 167–174. MR 136726
- G. D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978. MR 513828, DOI 10.1007/BFb0067708
- Gareth A. Jones, Varieties and simple groups, J. Austral. Math. Soc. 17 (1974), 163–173. MR 344342, DOI 10.1017/S1446788700016748
- Serge Lang, Sur les séries $L$ d’une variété algébrique, Bull. Soc. Math. France 84 (1956), 385–407 (French). MR 88777, DOI 10.24033/bsmf.1477
- Michael Larsen, Word maps have large image, Israel J. Math. 139 (2004), 149–156. MR 2041227, DOI 10.1007/BF02787545 [L2]L2 M. Larsen, How often is a partition an $n$’th power?, arXiv: math.CO/9712223. [LP]LP M. Larsen and R. Pink, Finite subgroups of algebraic groups. Preprint, 1999.
- R. Lawther and Martin W. Liebeck, On the diameter of a Cayley graph of a simple group of Lie type based on a conjugacy class, J. Combin. Theory Ser. A 83 (1998), no. 1, 118–137. MR 1629452, DOI 10.1006/jcta.1998.2869
- Martin W. Liebeck and Aner Shalev, Diameters of finite simple groups: sharp bounds and applications, Ann. of Math. (2) 154 (2001), no. 2, 383–406. MR 1865975, DOI 10.2307/3062101
- Martin W. Liebeck and Aner Shalev, Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks, J. Algebra 276 (2004), no. 2, 552–601. MR 2058457, DOI 10.1016/S0021-8693(03)00515-5
- Martin W. Liebeck and Aner Shalev, Fuchsian groups, finite simple groups and representation varieties, Invent. Math. 159 (2005), no. 2, 317–367. MR 2116277, DOI 10.1007/s00222-004-0390-3
- C. Martinez and E. Zelmanov, Products of powers in finite simple groups. part B, Israel J. Math. 96 (1996), no. part B, 469–479. MR 1433702, DOI 10.1007/BF02937318
- Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 266911
- Thomas W. Müller and Jan-Christoph Schlage-Puchta, Character theory of symmetric groups, subgroup growth of Fuchsian groups, and random walks, Adv. Math. 213 (2007), no. 2, 919–982. MR 2332616, DOI 10.1016/j.aim.2007.01.016
- Melvyn B. Nathanson, Additive number theory, Graduate Texts in Mathematics, vol. 164, Springer-Verlag, New York, 1996. The classical bases. MR 1395371, DOI 10.1007/978-1-4757-3845-2
- Nikolay Nikolov and Dan Segal, On finitely generated profinite groups. I. Strong completeness and uniform bounds, Ann. of Math. (2) 165 (2007), no. 1, 171–238. MR 2276769, DOI 10.4007/annals.2007.165.171
- Nikolay Nikolov and Dan Segal, On finitely generated profinite groups. II. Products in quasisimple groups, Ann. of Math. (2) 165 (2007), no. 1, 239–273. MR 2276770, DOI 10.4007/annals.2007.165.239
- Richard Pink, Compact subgroups of linear algebraic groups, J. Algebra 206 (1998), no. 2, 438–504. MR 1637068, DOI 10.1006/jabr.1998.7439
- Jan Saxl and John S. Wilson, A note on powers in simple groups, Math. Proc. Cambridge Philos. Soc. 122 (1997), no. 1, 91–94. MR 1443588, DOI 10.1017/S030500419600165X [Sh]Sh A. Shalev, Word maps, conjugacy classes, and a non-commutative Waring-type theorem, to appear in Annals of Math.
- J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, RI, 1966, pp. 33–62. MR 224710
- John Wilson, First-order group theory, Infinite groups 1994 (Ravello), de Gruyter, Berlin, 1996, pp. 301–314. MR 1477188
Bibliographic Information
- Michael Larsen
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
- MR Author ID: 293592
- Email: larsen@math.indiana.edu
- Aner Shalev
- Affiliation: Einstein Institute of Mathematics, Hebrew University, Givat Ram, Jerusalem 91904, Israel
- MR Author ID: 228986
- ORCID: 0000-0001-9428-2958
- Email: shalev@math.huji.ac.il
- Received by editor(s): February 1, 2007
- Published electronically: September 12, 2008
- Additional Notes: The first author was partially supported by NSF grant DMS-0354772
The second author was partially supported by an Israel Science Foundation Grant.
Both authors were partially supported by a Bi-National Science Foundation United States-Israel Grant. - © Copyright 2008 American Mathematical Society
- Journal: J. Amer. Math. Soc. 22 (2009), 437-466
- MSC (2000): Primary 20D06, 20G40; Secondary 14G15
- DOI: https://doi.org/10.1090/S0894-0347-08-00615-2
- MathSciNet review: 2476780