Asymptotic enumeration and limit laws of planar graphs
HTML articles powered by AMS MathViewer
- by Omer Giménez and Marc Noy
- J. Amer. Math. Soc. 22 (2009), 309-329
- DOI: https://doi.org/10.1090/S0894-0347-08-00624-3
- Published electronically: October 17, 2008
- PDF | Request permission
Abstract:
We present a complete analytic solution to the problem of counting planar graphs. We prove an estimate $g_n \sim g\cdot n^{-7/2} \gamma ^n n!$ for the number $g_n$ of labelled planar graphs on $n$ vertices, where $\gamma$ and $g$ are explicit computable constants. We show that the number of edges in random planar graphs is asymptotically normal with linear mean and variance and, as a consequence, the number of edges is sharply concentrated around its expected value. Moreover we prove an estimate $g(q)\cdot n^{-4}\gamma (q)^n n!$ for the number of planar graphs with $n$ vertices and $\lfloor qn \rfloor$ edges, where $\gamma (q)$ is an analytic function of $q$. We also show that the number of connected components in a random planar graph is distributed asymptotically as a shifted Poisson law $1+P(\nu )$, where $\nu$ is an explicit constant. Additional Gaussian and Poisson limit laws for random planar graphs are derived. The proofs are based on singularity analysis of generating functions and on perturbation of singularities.References
- Edward A. Bender, Zhicheng Gao, and Nicholas C. Wormald, The number of labeled 2-connected planar graphs, Electron. J. Combin. 9 (2002), no. 1, Research Paper 43, 13. MR 1946145, DOI 10.37236/1659
- Manuel Bodirsky, Omer Giménez, Mihyun Kang, and Marc Noy, Enumeration and limit laws for series-parallel graphs, European J. Combin. 28 (2007), no. 8, 2091–2105. MR 2351512, DOI 10.1016/j.ejc.2007.04.011
- Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, Dominique Poulalhon, and Gilles Schaeffer, Planar graphs, via well-orderly maps and trees, Graphs Combin. 22 (2006), no. 2, 185–202. MR 2231990, DOI 10.1007/s00373-006-0647-2
- Alain Denise, Marcio Vasconcellos, and Dominic J. A. Welsh, The random planar graph, Congr. Numer. 113 (1996), 61–79. Festschrift for C. St. J. A. Nash-Williams. MR 1393702
- Philippe Flajolet and Andrew Odlyzko, Singularity analysis of generating functions, SIAM J. Discrete Math. 3 (1990), no. 2, 216–240. MR 1039294, DOI 10.1137/0403019 FS P. Flajolet and R. Sedgewick, Analytic combinatorics, to be published in 2008 by Cambridge University Press, preliminary version available at http://algo.inria.fr/flajolet/Publications.
- Éric Fusy, Quadratic exact-size and linear approximate-size random generation of planar graphs, 2005 International Conference on Analysis of Algorithms, Discrete Math. Theor. Comput. Sci. Proc., AD, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2005, pp. 125–138. MR 2193112
- Stefanie Gerke and Colin McDiarmid, On the number of edges in random planar graphs, Combin. Probab. Comput. 13 (2004), no. 2, 165–183. MR 2047234, DOI 10.1017/S0963548303005947
- Stefanie Gerke, Colin McDiarmid, Angelika Steger, and Andreas Weißl, Random planar graphs with given average degree, Combinatorics, complexity, and chance, Oxford Lecture Ser. Math. Appl., vol. 34, Oxford Univ. Press, Oxford, 2007, pp. 83–102. MR 2314563, DOI 10.1093/acprof:oso/9780198571278.003.0006
- Omer Giménez and Marc Noy, Estimating the growth constant of labelled planar graphs, Mathematics and computer science. III, Trends Math., Birkhäuser, Basel, 2004, pp. 133–139. MR 2090501
- Frank Harary and Edgar M. Palmer, Graphical enumeration, Academic Press, New York-London, 1973. MR 0357214
- Colin McDiarmid, Angelika Steger, and Dominic J. A. Welsh, Random planar graphs, J. Combin. Theory Ser. B 93 (2005), no. 2, 187–205. MR 2117936, DOI 10.1016/j.jctb.2004.09.007
- R. C. Mullin and P. J. Schellenberg, The enumeration of $c$-nets via quadrangulations, J. Combinatorial Theory 4 (1968), 259–276. MR 218275, DOI 10.1016/S0021-9800(68)80007-9
- Deryk Osthus, Hans Jürgen Prömel, and Anusch Taraz, On random planar graphs, the number of planar graphs and their triangulations, J. Combin. Theory Ser. B 88 (2003), no. 1, 119–134. MR 1973264, DOI 10.1016/S0095-8956(02)00040-0
- B. A. Trahtenbrot, The theory of non-repeating contact schemes, Trudy Mat. Inst. Steklov. 51 (1958), 226–269 (Russian). MR 0107474
- György Turán, On the succinct representation of graphs, Discrete Appl. Math. 8 (1984), no. 3, 289–294. MR 749658, DOI 10.1016/0166-218X(84)90126-4
- W. T. Tutte, A census of planar triangulations, Canadian J. Math. 14 (1962), 21–38. MR 130841, DOI 10.4153/CJM-1962-002-9
- W. T. Tutte, A census of planar maps, Canadian J. Math. 15 (1963), 249–271. MR 146823, DOI 10.4153/CJM-1963-029-x
- W. T. Tutte, Connectivity in graphs, Mathematical Expositions, No. 15, University of Toronto Press, Toronto, Ont.; Oxford University Press, London, 1966. MR 0210617, DOI 10.3138/9781487584863
- T. R. S. Walsh, Counting labelled three-connected and homeomorphically irreducible two-connected graphs, J. Combin. Theory Ser. B 32 (1982), no. 1, 1–11. MR 649833, DOI 10.1016/0097-3165(82)90061-9
- Hassler Whitney, Congruent Graphs and the Connectivity of Graphs, Amer. J. Math. 54 (1932), no. 1, 150–168. MR 1506881, DOI 10.2307/2371086
Bibliographic Information
- Omer Giménez
- Affiliation: Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Jordi Girona 1–3, 08034 Barcelona, Spain
- Email: Omer.Gimenez@upc.edu
- Marc Noy
- Affiliation: Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Jordi Girona 1–3, 08034 Barcelona, Spain
- Email: Marc.Noy@upc.edu
- Received by editor(s): August 3, 2005
- Published electronically: October 17, 2008
- Additional Notes: The first author’s research was supported in part by Project MTM2005-08618C02-01.
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 22 (2009), 309-329
- MSC (2000): Primary 05A16, 05C30; Secondary 05C10
- DOI: https://doi.org/10.1090/S0894-0347-08-00624-3
- MathSciNet review: 2476775