## Asymmetry of near-critical percolation interfaces

HTML articles powered by AMS MathViewer

- by Pierre Nolin and Wendelin Werner
- J. Amer. Math. Soc.
**22**(2009), 797-819 - DOI: https://doi.org/10.1090/S0894-0347-08-00619-X
- Published electronically: September 16, 2008
- PDF | Request permission

## Abstract:

We study the possible scaling limits of percolation interfaces in two dimensions on the triangular lattice. When one lets the percolation parameter $p(N)$ vary with the size $N$ of the box that one is considering, three possibilities arise in the large-scale limit. It is known that when $p(N)$ does not converge to $1/2$ fast enough, then the scaling limits are degenerate, whereas if $p(N) - 1 / 2$ goes to zero quickly, the scaling limits are SLE(6) as when $p=1/2$. We study some properties of the (non-void) intermediate regime where the large scale behavior is neither SLE(6) nor degenerate. We prove that in this case, the law of any scaling limit is singular with respect to that of SLE(6), even if it is still supported on the set of curves with Hausdorff dimension equal to $7/4$.## References

- Michael Aizenman,
*Scaling limit for the incipient spanning clusters*, Mathematics of multiscale materials (Minneapolis, MN, 1995–1996) IMA Vol. Math. Appl., vol. 99, Springer, New York, 1998, pp. 1–24. MR**1635999**, DOI 10.1007/978-1-4612-1728-2_{1} - M. Aizenman and A. Burchard,
*Hölder regularity and dimension bounds for random curves*, Duke Math. J.**99**(1999), no. 3, 419–453. MR**1712629**, DOI 10.1215/S0012-7094-99-09914-3 - C. Borgs, J. T. Chayes, H. Kesten, and J. Spencer,
*The birth of the infinite cluster: finite-size scaling in percolation*, Comm. Math. Phys.**224**(2001), no. 1, 153–204. Dedicated to Joel L. Lebowitz. MR**1868996**, DOI 10.1007/s002200100521 - Federico Camia and Charles M. Newman,
*Two-dimensional critical percolation: the full scaling limit*, Comm. Math. Phys.**268**(2006), no. 1, 1–38. MR**2249794**, DOI 10.1007/s00220-006-0086-1 - Federico Camia and Charles M. Newman,
*Critical percolation exploration path and $\textrm {SLE}_6$: a proof of convergence*, Probab. Theory Related Fields**139**(2007), no. 3-4, 473–519. MR**2322705**, DOI 10.1007/s00440-006-0049-7 - Federico Camia, Luiz Renato G. Fontes, and Charles M. Newman,
*The scaling limit geometry of near-critical 2D percolation*, J. Stat. Phys.**125**(2006), no. 5-6, 1159–1175. MR**2282484**, DOI 10.1007/s10955-005-9014-6 - Federico Camia, Luiz Renato G. Fontes, and Charles M. Newman,
*Two-dimensional scaling limits via marked nonsimple loops*, Bull. Braz. Math. Soc. (N.S.)**37**(2006), no. 4, 537–559. MR**2284886**, DOI 10.1007/s00574-006-0026-x - J. T. Chayes,
*Finite-size scaling in percolation*, Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), 1998, pp. 113–122. MR**1648146** - J. T. Chayes, L. Chayes, and J. Fröhlich,
*The low-temperature behavior of disordered magnets*, Comm. Math. Phys.**100**(1985), no. 3, 399–437. MR**802552** - J. T. Chayes, L. Chayes, Daniel S. Fisher, and T. Spencer,
*Finite-size scaling and correlation lengths for disordered systems*, Phys. Rev. Lett.**57**(1986), no. 24, 2999–3002. MR**925751**, DOI 10.1103/PhysRevLett.57.2999
CNo L. Chayes, P. Nolin, Large scale properties of the IIIC for 2D percolation, Stoch. Proc. Appl., to appear.
GPS1 C. Garban, G. Pete, O. Schramm, The Fourier spectrum of critical percolation, preprint arXiv:0803.3750 (2008).
GPS2 C. Garban, G. Pete, O. Schramm, in preparation (2008).
- Geoffrey Grimmett,
*Percolation*, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 321, Springer-Verlag, Berlin, 1999. MR**1707339**, DOI 10.1007/978-3-662-03981-6 - Harry Kesten,
*Percolation theory for mathematicians*, Progress in Probability and Statistics, vol. 2, Birkhäuser, Boston, Mass., 1982. MR**692943** - Harry Kesten,
*Scaling relations for $2$D-percolation*, Comm. Math. Phys.**109**(1987), no. 1, 109–156. MR**879034** - Gregory F. Lawler,
*Conformally invariant processes in the plane*, Mathematical Surveys and Monographs, vol. 114, American Mathematical Society, Providence, RI, 2005. MR**2129588**, DOI 10.1090/surv/114 - Gregory F. Lawler, Oded Schramm, and Wendelin Werner,
*Values of Brownian intersection exponents. I. Half-plane exponents*, Acta Math.**187**(2001), no. 2, 237–273. MR**1879850**, DOI 10.1007/BF02392618 - Gregory F. Lawler, Oded Schramm, and Wendelin Werner,
*Values of Brownian intersection exponents. I. Half-plane exponents*, Acta Math.**187**(2001), no. 2, 237–273. MR**1879850**, DOI 10.1007/BF02392618 - Gregory F. Lawler, Oded Schramm, and Wendelin Werner,
*One-arm exponent for critical 2D percolation*, Electron. J. Probab.**7**(2002), no. 2, 13. MR**1887622**, DOI 10.1214/EJP.v7-101 - Gregory Lawler, Oded Schramm, and Wendelin Werner,
*Conformal restriction: the chordal case*, J. Amer. Math. Soc.**16**(2003), no. 4, 917–955. MR**1992830**, DOI 10.1090/S0894-0347-03-00430-2
N1 P. Nolin, Critical exponents of planar gradient percolation, Ann. Probab., to appear.
N2 P. Nolin, Near-critical percolation in two dimensions, Elec. J. Probab., to appear.
SG B. Sapoval, M. Rosso, J.F. Gouyet, The fractal nature of a diffusion front and relation to percolation, J. Physique Lett. - Oded Schramm,
*Scaling limits of loop-erased random walks and uniform spanning trees*, Israel J. Math.**118**(2000), 221–288. MR**1776084**, DOI 10.1007/BF02803524
SS O. Schramm, J. Steif, Quantitative noise sensitivity and exceptional times for percolation, Ann. Math., to appear.
- Stanislav Smirnov,
*Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits*, C. R. Acad. Sci. Paris Sér. I Math.**333**(2001), no. 3, 239–244 (English, with English and French summaries). MR**1851632**, DOI 10.1016/S0764-4442(01)01991-7 - Stanislav Smirnov,
*Towards conformal invariance of 2D lattice models*, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1421–1451. MR**2275653** - Stanislav Smirnov and Wendelin Werner,
*Critical exponents for two-dimensional percolation*, Math. Res. Lett.**8**(2001), no. 5-6, 729–744. MR**1879816**, DOI 10.4310/MRL.2001.v8.n6.a4 - Wendelin Werner,
*Random planar curves and Schramm-Loewner evolutions*, Lectures on probability theory and statistics, Lecture Notes in Math., vol. 1840, Springer, Berlin, 2004, pp. 107–195. MR**2079672**, DOI 10.1007/978-3-540-39982-7_{2} - Wendelin Werner,
*The conformally invariant measure on self-avoiding loops*, J. Amer. Math. Soc.**21**(2008), no. 1, 137–169. MR**2350053**, DOI 10.1090/S0894-0347-07-00557-7
Wpc W. Werner, Critical two-dimensional percolation, Lecture notes from the IAS/Park City 2007 summer school, preprint arXiv:0710.0856 (2007).

**46**, L149-L156 (1985).

## Bibliographic Information

**Pierre Nolin**- Affiliation: DMA, École Normale Supérieure, 45 rue d’Ulm, 75230 Paris Cedex 05, France, and Laboratoire de Mathématiques, Bât. 425, Université Paris-Sud 11, 91405 Orsay Cedex, France
- Email: pierre.nolin@ens.fr
**Wendelin Werner**- Affiliation: DMA, École Normale Supérieure, 45 rue d’Ulm, 75230 Paris Cedex 05, France, and Laboratoire de Mathématiques, Bât. 425, Université Paris-Sud 11, 91405 Orsay Cedex, France
- Email: wendelin.werner@math.u-psud.fr
- Received by editor(s): December 4, 2007
- Published electronically: September 16, 2008
- Additional Notes: This research was supported by the Agence Nationale pour la Recherche under the grant ANR-06-BLAN-0058.
- © Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc.
**22**(2009), 797-819 - MSC (2000): Primary 60K35, 82B27, 82B43
- DOI: https://doi.org/10.1090/S0894-0347-08-00619-X
- MathSciNet review: 2505301