## The Galton board: Limit theorems and recurrence

HTML articles powered by AMS MathViewer

- by N. Chernov and D. Dolgopyat PDF
- J. Amer. Math. Soc.
**22**(2009), 821-858

## Abstract:

We study a particle moving in $\mathbb {R}^2$ under a constant (external) force and bouncing off a periodic array of convex domains (scatterers); the latter must satisfy a standard ‘finite horizon’ condition to prevent ‘ballistic’ (collision-free) motion. This model is known to physicists as the Galton board (it is also identical to a periodic Lorentz gas). Previous heuristic and experimental studies have suggested that the particle’s speed $v(t)$ should grow as $t^{1/3}$ and its coordinate $x(t)$ as $t^{2/3}$. We prove these conjectures rigorously; we also find limit distributions for the rescaled velocity $t^{-1/3} v(t)$ and position $t^{-2/3} x(t)$. In addition, quite unexpectedly, we discover that the particle’s motion is recurrent. That means that a ball dropped on an idealized Galton board will roll down, but from time to time it should bounce all the way back up (with probability one).## References

- Patrick Billingsley,
*Probability and measure*, 3rd ed., Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1995. A Wiley-Interscience Publication. MR**1324786** - L. A. Bunimovich and Ya. G. Sinaĭ,
*Statistical properties of Lorentz gas with periodic configuration of scatterers*, Comm. Math. Phys.**78**(1980/81), no. 4, 479–497. MR**606459** - L. A. Bunimovich, Ya. G. Sinaĭ, and N. I. Chernov,
*Statistical properties of two-dimensional hyperbolic billiards*, Uspekhi Mat. Nauk**46**(1991), no. 4(280), 43–92, 192 (Russian); English transl., Russian Math. Surveys**46**(1991), no. 4, 47–106. MR**1138952**, DOI 10.1070/RM1991v046n04ABEH002827
CS Chepelianskii A. D. and Shepelyansky D. L. - N. Chernov,
*Decay of correlations and dispersing billiards*, J. Statist. Phys.**94**(1999), no. 3-4, 513–556. MR**1675363**, DOI 10.1023/A:1004581304939 - N. I. Chernov,
*Sinai billiards under small external forces*, Ann. Henri Poincaré**2**(2001), no. 2, 197–236. MR**1832968**, DOI 10.1007/PL00001034
CD1 Chernov N. and Dolgopyat D. - Nikolai Chernov and Dmitry Dolgopyat,
*Hyperbolic billiards and statistical physics*, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1679–1704. MR**2275665** - N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinaĭ,
*Steady-state electrical conduction in the periodic Lorentz gas*, Comm. Math. Phys.**154**(1993), no. 3, 569–601. MR**1224092**
CELSp Chernov N. I., Eyink G. L., Lebowitz J. L. and Sinai Ya. G., - Nikolai Chernov and Roberto Markarian,
*Chaotic billiards*, Mathematical Surveys and Monographs, vol. 127, American Mathematical Society, Providence, RI, 2006. MR**2229799**, DOI 10.1090/surv/127
DM Dettmann C. P. and Morriss G. P., - Dmitry Dolgopyat,
*On differentiability of SRB states for partially hyperbolic systems*, Invent. Math.**155**(2004), no. 2, 389–449. MR**2031432**, DOI 10.1007/s00222-003-0324-5 - Dmitry Dolgopyat,
*Limit theorems for partially hyperbolic systems*, Trans. Amer. Math. Soc.**356**(2004), no. 4, 1637–1689. MR**2034323**, DOI 10.1090/S0002-9947-03-03335-X - Dmitry Dolgopyat,
*Averaging and invariant measures*, Mosc. Math. J.**5**(2005), no. 3, 537–576, 742 (English, with English and Russian summaries). MR**2241812**, DOI 10.17323/1609-4514-2005-5-3-537-576 - Dmitry Dolgopyat,
*Bouncing balls in non-linear potentials*, Discrete Contin. Dyn. Syst.**22**(2008), no. 1-2, 165–182. MR**2410953**, DOI 10.3934/dcds.2008.22.165
D5 Dolgopyat D. - Dmitry Dolgopyat, Domokos Szász, and Tamás Varjú,
*Recurrence properties of planar Lorentz process*, Duke Math. J.**142**(2008), no. 2, 241–281. MR**2401621**, DOI 10.1215/00127094-2008-006
DSV2 Dolgopyat D., Szasz D. and Varju T. - Richard Durrett,
*Probability: theory and examples*, 2nd ed., Duxbury Press, Belmont, CA, 1996. MR**1609153**
G Galton F., - V. V. Kozlov and M. Yu. Mitrofanova,
*Galton board*, Regul. Chaotic Dyn.**8**(2003), no. 4, 431–439. MR**2023046**, DOI 10.1070/RD2003v008n04ABEH000255
KR Krapivsky P. and Redner S., - J. E. Littlewood,
*On the problem of $n$ bodies*, Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.]**1952**(1952), 143–151. MR**54375**
L05 Lorentz H. A., - Arthur Lue and Howard Brenner,
*Phase flow and statistical structure of Galton-board systems*, Phys. Rev. E (3)**47**(1993), no. 5, 3128–3144. MR**1377898**, DOI 10.1103/PhysRevE.47.3128 - Bill Moran, William G. Hoover, and Stronzo Bestiale,
*Diffusion in a periodic Lorentz gas*, J. Statist. Phys.**48**(1987), no. 3-4, 709–726. MR**914903**, DOI 10.1007/BF01019693 - Bernt Øksendal,
*Stochastic differential equations*, 6th ed., Universitext, Springer-Verlag, Berlin, 2003. An introduction with applications. MR**2001996**, DOI 10.1007/978-3-642-14394-6
PW Piasecki J. and Wajnryb E., - K. Ravishankar and L. Triolo,
*Diffusive limit of the Lorentz model with a uniform field starting from the Markov approximation*, Markov Process. Related Fields**5**(1999), no. 4, 385–421. MR**1734241** - Daniel Revuz and Marc Yor,
*Continuous martingales and Brownian motion*, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1999. MR**1725357**, DOI 10.1007/978-3-662-06400-9 - Ja. G. Sinaĭ,
*Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards*, Uspehi Mat. Nauk**25**(1970), no. 2 (152), 141–192 (Russian). MR**0274721**
YK Yamada T., Kawasaki K. - Lai-Sang Young,
*Statistical properties of dynamical systems with some hyperbolicity*, Ann. of Math. (2)**147**(1998), no. 3, 585–650. MR**1637655**, DOI 10.2307/120960 - G. M. Zaslavsky,
*Chaos in dynamic systems*, Harwood Academic Publishers, Chur, 1985. Translated from the Russian by V. I. Kisin. MR**780371**

*Dynamical Turbulent Flow on the Galton Board with Friction,*Phys. Rev. Lett.

**87**(2001) paper 034101 (4 pages).

*Brownian Motion I*, to appear in Memoirs AMS.

*Derivation of Ohm’s law in a deterministic mechanical model*, Phys. Rev. Lett.

**70**(1993), 2209–2212.

*Crisis in the periodic Lorentz gas*, Phys. Rev. E.

**54**(1996), 4782–4790.

*Fermi acceleration,*Cont. Math.

**469**(2008), 149–166.

*Limit theorems for perturbed planar Lorentz process,*preprint.

*Natural Inheritance,*MacMillan, 1989 (facsimile available at www.galton.org). F Fermi E.

*On the origin of cosmic radiation,*Phys. Rev.

**75**(1949), 1169–1174.

*Slowly divergent drift in the field-driven Lorentz gas*, Phys. Rev. E

**56**(1997), 3822.

*The motion of electrons in metallic bodies*, Proc. Amst. Acad.

**7**(1905), 438–453.

*Long-time behavior of the Lorentz electron gas in a constant, uniform electric field*, J. Stat. Phys.

**21**(1979), 549–559.

*Nonlinear effects in the shear viscosity of a critical mixture*, Prog. Theor. Phys.

**38**(1967), 1031–1051.

## Additional Information

**N. Chernov**- Affiliation: Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294
**D. Dolgopyat**- Affiliation: Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
- MR Author ID: 357840
- Received by editor(s): December 12, 2007
- Published electronically: October 21, 2008
- © Copyright 2008 by the authors
- Journal: J. Amer. Math. Soc.
**22**(2009), 821-858 - MSC (2000): Primary 37D50
- DOI: https://doi.org/10.1090/S0894-0347-08-00626-7
- MathSciNet review: 2505302