SLE and the free field: Partition functions and couplings
HTML articles powered by AMS MathViewer
- by Julien Dubédat;
- J. Amer. Math. Soc. 22 (2009), 995-1054
- DOI: https://doi.org/10.1090/S0894-0347-09-00636-5
- Published electronically: April 29, 2009
- PDF | Request permission
Abstract:
Schramm-Loewner Evolutions (SLE) are random curves in planar simply connected domains; the massless (Euclidean) free field in such a domain is a random distribution. Both have conformal invariance properties in law. In the present article, some relations between the two objects are studied. We establish identities of partition functions between different versions of SLE and the free field with appropriate boundary conditions; this involves $\zeta$-regularization and the Polyakov-Alvarez conformal anomaly formula. We proceed with a construction of couplings of SLE with the free field, showing that, in a precise sense, chordal SLE is the solution of a stochastic “differential” equation driven by the free field. Existence, uniqueness in law, and pathwise uniqueness for these SDEs are proved for general $\kappa >0$. This identifies SLE curves as local observables of the free field.References
- Orlando Alvarez, Theory of strings with boundaries: fluctuations, topology and quantum geometry, Nuclear Phys. B 216 (1983), no. 1, 125–184. MR 701643, DOI 10.1016/0550-3213(83)90490-X
- Michel Bauer and Denis Bernard, 2D growth processes: SLE and Loewner chains, Phys. Rep. 432 (2006), no. 3-4, 115–221. MR 2251805, DOI 10.1016/j.physrep.2006.06.002
- Vincent Beffara, Hausdorff dimensions for $\rm SLE_6$, Ann. Probab. 32 (2004), no. 3B, 2606–2629. MR 2078552, DOI 10.1214/009117904000000072
- Federico Camia and Charles M. Newman, Two-dimensional critical percolation: the full scaling limit, Comm. Math. Phys. 268 (2006), no. 1, 1–38. MR 2249794, DOI 10.1007/s00220-006-0086-1
- Giuseppe Da Prato and Jerzy Zabczyk, Second order partial differential equations in Hilbert spaces, London Mathematical Society Lecture Note Series, vol. 293, Cambridge University Press, Cambridge, 2002. MR 1985790, DOI 10.1017/CBO9780511543210
- Julien Dubédat, $\textrm {SLE}(\kappa ,\rho )$ martingales and duality, Ann. Probab. 33 (2005), no. 1, 223–243. MR 2118865, DOI 10.1214/009117904000000793
- Julien Dubédat, Euler integrals for commuting SLEs, J. Stat. Phys. 123 (2006), no. 6, 1183–1218. MR 2253875, DOI 10.1007/s10955-006-9132-9
- Julien Dubédat, Excursion decompositions for SLE and Watts’ crossing formula, Probab. Theory Related Fields 134 (2006), no. 3, 453–488. MR 2226888, DOI 10.1007/s00440-005-0446-3
- Julien Dubédat, Commutation relations for Schramm-Loewner evolutions, Comm. Pure Appl. Math. 60 (2007), no. 12, 1792–1847. MR 2358649, DOI 10.1002/cpa.20191 Dubdual J. Dubédat. Duality of Schramm-Loewner Evolutions. To appear, Ann. Sci. Ecole Normale Supérieure; arXiv:math.PR/0711.1884, 2007. DubVir J. Dubédat. SLE partition functions, $\zeta$-regularization and Virasoro representations. in preparation, 2007.
- R. Friedrich and J. Kalkkinen, On conformal field theory and stochastic Loewner evolution, Nuclear Phys. B 687 (2004), no. 3, 279–302. MR 2059141, DOI 10.1016/j.nuclphysb.2004.03.025
- Krzysztof Gawȩdzki, Lectures on conformal field theory, Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) Amer. Math. Soc., Providence, RI, 1999, pp. 727–805. MR 1701610, DOI 10.1007/s002200050573
- James Glimm and Arthur Jaffe, Quantum physics, 2nd ed., Springer-Verlag, New York, 1987. A functional integral point of view. MR 887102, DOI 10.1007/978-1-4612-4728-9
- Svante Janson, Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, vol. 129, Cambridge University Press, Cambridge, 1997. MR 1474726, DOI 10.1017/CBO9780511526169
- Richard Kenyon, Conformal invariance of domino tiling, Ann. Probab. 28 (2000), no. 2, 759–795. MR 1782431, DOI 10.1214/aop/1019160260
- Richard Kenyon, Dominos and the Gaussian free field, Ann. Probab. 29 (2001), no. 3, 1128–1137. MR 1872739, DOI 10.1214/aop/1015345599 KenWilgrove R. Kenyon and D. Wilson. Boundary Partitions in Trees and Dimers. To appear, Trans. Amer. Math. Soc.; preprint, arXiv:math.PR/0608422, 2006.
- Richard W. Kenyon, James G. Propp, and David B. Wilson, Trees and matchings, Electron. J. Combin. 7 (2000), Research Paper 25, 34. MR 1756162, DOI 10.37236/1503 Kontarbeit M. Kontsevich. SLE, CFT, and phase boundaries. Arbeitstagung 2003, preprint, MPI 2003 (60).
- M. Kontsevich and Y. Suhov, On Malliavin measures, SLE, and CFT, Tr. Mat. Inst. Steklova 258 (2007), no. Anal. i Osob. Ch. 1, 107–153; English transl., Proc. Steklov Inst. Math. 258 (2007), no. 1, 100–146. MR 2400527, DOI 10.1134/S0081543807030108
- Gregory Lawler, Oded Schramm, and Wendelin Werner, Conformal restriction: the chordal case, J. Amer. Math. Soc. 16 (2003), no. 4, 917–955. MR 1992830, DOI 10.1090/S0894-0347-03-00430-2
- Gregory F. Lawler, Conformally invariant processes in the plane, Mathematical Surveys and Monographs, vol. 114, American Mathematical Society, Providence, RI, 2005. MR 2129588, DOI 10.1090/surv/114
- Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab. 32 (2004), no. 1B, 939–995. MR 2044671, DOI 10.1214/aop/1079021469
- Gregory F. Lawler and José A. Trujillo Ferreras, Random walk loop soup, Trans. Amer. Math. Soc. 359 (2007), no. 2, 767–787. MR 2255196, DOI 10.1090/S0002-9947-06-03916-X
- Gregory F. Lawler and Wendelin Werner, The Brownian loop soup, Probab. Theory Related Fields 128 (2004), no. 4, 565–588. MR 2045953, DOI 10.1007/s00440-003-0319-6 LJloops Y. Le Jan. Markov loops, determinants and Gaussian fields. arxiv:math.PR/0612112, 2006.
- B. Osgood, R. Phillips, and P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal. 80 (1988), no. 1, 148–211. MR 960228, DOI 10.1016/0022-1236(88)90070-5
- A. M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981), no. 3, 207–210. MR 623209, DOI 10.1016/0370-2693(81)90743-7
- Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1999. MR 1725357, DOI 10.1007/978-3-662-06400-9
- Steffen Rohde and Oded Schramm, Basic properties of SLE, Ann. of Math. (2) 161 (2005), no. 2, 883–924. MR 2153402, DOI 10.4007/annals.2005.161.883
- Oded Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118 (2000), 221–288. MR 1776084, DOI 10.1007/BF02803524 SSfreefield O. Schramm and S. Sheffield. Contour lines of the two-dimensional discrete Gaussian free field. Acta Math., 202(1):21–137, 2009. SSFF2 O. Schramm and S. Sheffield. In preparation. 2007. Sheffexplor S. Sheffield. Exploration trees and conformal loop ensembles. preprint, arXiv:math.PR/ 0609167, 2006.
- Scott Sheffield, Gaussian free fields for mathematicians, Probab. Theory Related Fields 139 (2007), no. 3-4, 521–541. MR 2322706, DOI 10.1007/s00440-006-0050-1
- Barry Simon, The $P(\phi )_{2}$ Euclidean (quantum) field theory, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1974. MR 489552
- Barry Simon, Trace ideals and their applications, 2nd ed., Mathematical Surveys and Monographs, vol. 120, American Mathematical Society, Providence, RI, 2005. MR 2154153, DOI 10.1090/surv/120
- Hidenori Sonoda, Functional determinants on punctured Riemann surfaces and their application to string theory, Nuclear Phys. B 294 (1987), no. 1, 157–192. MR 909430, DOI 10.1016/0550-3213(87)90578-5
- Wendelin Werner, Random planar curves and Schramm-Loewner evolutions, Lectures on probability theory and statistics, Lecture Notes in Math., vol. 1840, Springer, Berlin, 2004, pp. 107–195. MR 2079672, DOI 10.1007/978-3-540-39982-7_{2}
- Dapeng Zhan, Duality of chordal SLE, Invent. Math. 174 (2008), no. 2, 309–353. MR 2439609, DOI 10.1007/s00222-008-0132-z
- Dapeng Zhan, Reversibility of chordal SLE, Ann. Probab. 36 (2008), no. 4, 1472–1494. MR 2435856, DOI 10.1214/07-AOP366
Bibliographic Information
- Julien Dubédat
- Affiliation: Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027
- MR Author ID: 710651
- Received by editor(s): February 27, 2008
- Published electronically: April 29, 2009
- Additional Notes: The author was partially supported by NSF grant DMS0804314
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 22 (2009), 995-1054
- MSC (2000): Primary 60G17, 60K35
- DOI: https://doi.org/10.1090/S0894-0347-09-00636-5
- MathSciNet review: 2525778