On abelian birational sections
Authors:
Hélène Esnault and Olivier Wittenberg
Journal:
J. Amer. Math. Soc. 23 (2010), 713-724
MSC (2010):
Primary 14G32; Secondary 14C25, 14G25, 14G20
DOI:
https://doi.org/10.1090/S0894-0347-10-00660-0
Published electronically:
January 22, 2010
MathSciNet review:
2629985
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: For a smooth and geometrically irreducible variety $X$ over a field $k$, the quotient of the absolute Galois group $G_{k(X)}$ by the commutator subgroup of $G_{\bar k(X)}$ projects onto $G_k$. We investigate the sections of this projection. We show that such sections correspond to “infinite divisions” of the elementary obstruction of Colliot-Thélène and Sansuc. If $k$ is a number field and the Tate–Shafarevich group of the Picard variety of $X$ is finite, then such sections exist if and only if the elementary obstruction vanishes. For curves this condition also amounts to the existence of divisors of degree $1$. Finally we show that the vanishing of the elementary obstruction is not preserved by extensions of scalars.
- M. Borovoi, J.-L. Colliot-Thélène, and A. N. Skorobogatov, The elementary obstruction and homogeneous spaces, Duke Math. J. 141 (2008), no. 2, 321–364 (English, with English and French summaries). MR 2376817, DOI https://doi.org/10.1215/S0012-7094-08-14124-9
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- M. Çiperiani and D. Krashen, Relative Brauer groups of genus $1$ curves, preprint, 2007.
- Jean-Louis Colliot-Thélène, Conjectures de type local-global sur l’image des groupes de Chow dans la cohomologie étale, Algebraic $K$-theory (Seattle, WA, 1997) Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 1–12 (French). MR 1743234, DOI https://doi.org/10.1090/pspum/067/1743234
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La descente sur les variétés rationnelles. II, Duke Math. J. 54 (1987), no. 2, 375–492 (French). MR 899402, DOI https://doi.org/10.1215/S0012-7094-87-05420-2
- P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over ${\bf Q}$ (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 79–297 (French). MR 1012168, DOI https://doi.org/10.1007/978-1-4613-9649-9_3
- H. Esnault and O. Wittenberg, Remarks on cycle classes of sections of the arithmetic fundamental group, Mosc. Math. J. 9 (2009), no. 3, 451–467.
- Alexander Grothendieck, Brief an G. Faltings, Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, pp. 49–58 (German). With an English translation on pp. 285–293. MR 1483108
- Alexander Grothendieck, Le groupe de Brauer. II. Théorie cohomologique, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 67–87 (French). MR 244270
- David Harari and Tamás Szamuely, Local-global principles for 1-motives, Duke Math. J. 143 (2008), no. 3, 531–557. MR 2423762, DOI https://doi.org/10.1215/00127094-2008-028
- David Harari and Tamás Szamuely, Galois sections for abelianized fundamental groups, Math. Ann. 344 (2009), no. 4, 779–800. With an appendix by E. V. Flynn. MR 2507624, DOI https://doi.org/10.1007/s00208-008-0327-z
- Jochen Koenigsmann, On the ‘section conjecture’ in anabelian geometry, J. Reine Angew. Math. 588 (2005), 221–235. MR 2196734, DOI https://doi.org/10.1515/crll.2005.2005.588.221
- Stephen Lichtenbaum, Duality theorems for curves over $p$-adic fields, Invent. Math. 7 (1969), 120–136. MR 242831, DOI https://doi.org/10.1007/BF01389795
- J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press, Inc., Boston, MA, 1986. MR 881804
- F. Pop, On the birational $p$-adic section conjecture, to appear in Compositio Math.
- S. Saito, Some observations on motivic cohomology of arithmetic schemes, Invent. Math. 98 (1989), no. 2, 371–404. MR 1016270, DOI https://doi.org/10.1007/BF01388859
- Claus Scheiderer, Real and étale cohomology, Lecture Notes in Mathematics, vol. 1588, Springer-Verlag, Berlin, 1994. MR 1321819
- Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577
- Alexei Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001. MR 1845760
- E. Witt, Zerlegung reeller algebraischer Funktionen in Quadrate. Schiefkörper über reellem Funktionenkörper, J. reine angew. Math. 171 (1934), 4–11.
- Olivier Wittenberg, On Albanese torsors and the elementary obstruction, Math. Ann. 340 (2008), no. 4, 805–838. MR 2372739, DOI https://doi.org/10.1007/s00208-007-0170-7
Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 14G32, 14C25, 14G25, 14G20
Retrieve articles in all journals with MSC (2010): 14G32, 14C25, 14G25, 14G20
Additional Information
Hélène Esnault
Affiliation:
Universität Duisburg–Essen, Mathematik, 45117 Essen, Germany
MR Author ID:
64210
Email:
esnault@uni-due.de
Olivier Wittenberg
Affiliation:
Département de mathématiques et applications, École normale supérieure, 45 rue d’Ulm, 75320 Paris Cedex 05, France
MR Author ID:
729226
Email:
wittenberg@dma.ens.fr
Received by editor(s):
February 18, 2009
Received by editor(s) in revised form:
November 28, 2009
Published electronically:
January 22, 2010
Additional Notes:
This research was supported in part by the DFG Leibniz Preis, the SFB/TR 45, and the ERC/Advanced Grant 226257
Article copyright:
© Copyright 2010
by H. Esnault and O. Wittenberg