On abelian birational sections
HTML articles powered by AMS MathViewer
- by Hélène Esnault and Olivier Wittenberg
- J. Amer. Math. Soc. 23 (2010), 713-724
- DOI: https://doi.org/10.1090/S0894-0347-10-00660-0
- Published electronically: January 22, 2010
Abstract:
For a smooth and geometrically irreducible variety $X$ over a field $k$, the quotient of the absolute Galois group $G_{k(X)}$ by the commutator subgroup of $G_{\bar k(X)}$ projects onto $G_k$. We investigate the sections of this projection. We show that such sections correspond to “infinite divisions” of the elementary obstruction of Colliot-Thélène and Sansuc. If $k$ is a number field and the Tate–Shafarevich group of the Picard variety of $X$ is finite, then such sections exist if and only if the elementary obstruction vanishes. For curves this condition also amounts to the existence of divisors of degree $1$. Finally we show that the vanishing of the elementary obstruction is not preserved by extensions of scalars.References
- M. Borovoi, J.-L. Colliot-Thélène, and A. N. Skorobogatov, The elementary obstruction and homogeneous spaces, Duke Math. J. 141 (2008), no. 2, 321–364 (English, with English and French summaries). MR 2376817, DOI 10.1215/S0012-7094-08-14124-9
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- M. Çiperiani and D. Krashen, Relative Brauer groups of genus $1$ curves, preprint, 2007.
- Jean-Louis Colliot-Thélène, Conjectures de type local-global sur l’image des groupes de Chow dans la cohomologie étale, Algebraic $K$-theory (Seattle, WA, 1997) Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 1–12 (French). MR 1743234, DOI 10.1090/pspum/067/1743234
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La descente sur les variétés rationnelles. II, Duke Math. J. 54 (1987), no. 2, 375–492 (French). MR 899402, DOI 10.1215/S0012-7094-87-05420-2
- P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over $\textbf {Q}$ (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 79–297 (French). MR 1012168, DOI 10.1007/978-1-4613-9649-9_{3}
- H. Esnault and O. Wittenberg, Remarks on cycle classes of sections of the arithmetic fundamental group, Mosc. Math. J. 9 (2009), no. 3, 451–467.
- Alexander Grothendieck, Brief an G. Faltings, Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, pp. 49–58 (German). With an English translation on pp. 285–293. MR 1483108
- Alexander Grothendieck, Le groupe de Brauer. II. Théorie cohomologique, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 67–87 (French). MR 244270
- David Harari and Tamás Szamuely, Local-global principles for 1-motives, Duke Math. J. 143 (2008), no. 3, 531–557. MR 2423762, DOI 10.1215/00127094-2008-028
- David Harari and Tamás Szamuely, Galois sections for abelianized fundamental groups, Math. Ann. 344 (2009), no. 4, 779–800. With an appendix by E. V. Flynn. MR 2507624, DOI 10.1007/s00208-008-0327-z
- Jochen Koenigsmann, On the ‘section conjecture’ in anabelian geometry, J. Reine Angew. Math. 588 (2005), 221–235. MR 2196734, DOI 10.1515/crll.2005.2005.588.221
- Stephen Lichtenbaum, Duality theorems for curves over $p$-adic fields, Invent. Math. 7 (1969), 120–136. MR 242831, DOI 10.1007/BF01389795
- J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press, Inc., Boston, MA, 1986. MR 881804
- F. Pop, On the birational $p$-adic section conjecture, to appear in Compositio Math.
- S. Saito, Some observations on motivic cohomology of arithmetic schemes, Invent. Math. 98 (1989), no. 2, 371–404. MR 1016270, DOI 10.1007/BF01388859
- Claus Scheiderer, Real and étale cohomology, Lecture Notes in Mathematics, vol. 1588, Springer-Verlag, Berlin, 1994. MR 1321819, DOI 10.1007/BFb0074269
- Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577, DOI 10.1007/BFb0108758
- Alexei Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001. MR 1845760, DOI 10.1017/CBO9780511549588
- E. Witt, Zerlegung reeller algebraischer Funktionen in Quadrate. Schiefkörper über reellem Funktionenkörper, J. reine angew. Math. 171 (1934), 4–11.
- Olivier Wittenberg, On Albanese torsors and the elementary obstruction, Math. Ann. 340 (2008), no. 4, 805–838. MR 2372739, DOI 10.1007/s00208-007-0170-7
Bibliographic Information
- Hélène Esnault
- Affiliation: Universität Duisburg–Essen, Mathematik, 45117 Essen, Germany
- MR Author ID: 64210
- Email: esnault@uni-due.de
- Olivier Wittenberg
- Affiliation: Département de mathématiques et applications, École normale supérieure, 45 rue d’Ulm, 75320 Paris Cedex 05, France
- MR Author ID: 729226
- Email: wittenberg@dma.ens.fr
- Received by editor(s): February 18, 2009
- Received by editor(s) in revised form: November 28, 2009
- Published electronically: January 22, 2010
- Additional Notes: This research was supported in part by the DFG Leibniz Preis, the SFB/TR 45, and the ERC/Advanced Grant 226257
- © Copyright 2010 by H. Esnault and O. Wittenberg
- Journal: J. Amer. Math. Soc. 23 (2010), 713-724
- MSC (2010): Primary 14G32; Secondary 14C25, 14G25, 14G20
- DOI: https://doi.org/10.1090/S0894-0347-10-00660-0
- MathSciNet review: 2629985