Arm exponents in high dimensional percolation
HTML articles powered by AMS MathViewer
- by Gady Kozma and Asaf Nachmias;
- J. Amer. Math. Soc. 24 (2011), 375-409
- DOI: https://doi.org/10.1090/S0894-0347-2010-00684-4
- Published electronically: November 16, 2010
- PDF | Request permission
Abstract:
We study the probability that the origin is connected to the sphere of radius $r$ (an arm event) in critical percolation in high dimensions, namely when the dimension $d$ is large enough or when $d>6$ and the lattice is sufficiently spread out. We prove that this probability decays like $r^{-2}$. Furthermore, we show that the probability of having $\ell$ disjoint arms to distance $r$ emanating from the vicinity of the origin is $r^{-2\ell }$.References
- Aharony, A. and Stauffer, D. (1991), Introduction To Percolation Theory, CRC Press.
- Michael Aizenman, On the number of incipient spanning clusters, Nuclear Phys. B 485 (1997), no. 3, 551–582. MR 1431856, DOI 10.1016/S0550-3213(96)00626-8
- Michael Aizenman and David J. Barsky, Sharpness of the phase transition in percolation models, Comm. Math. Phys. 108 (1987), no. 3, 489–526. MR 874906
- Michael Aizenman and Charles M. Newman, Tree graph inequalities and critical behavior in percolation models, J. Statist. Phys. 36 (1984), no. 1-2, 107–143. MR 762034, DOI 10.1007/BF01015729
- Krishna B. Athreya and Peter E. Ney, Branching processes, Die Grundlehren der mathematischen Wissenschaften, Band 196, Springer-Verlag, New York-Heidelberg, 1972. MR 373040
- D. J. Barsky and M. Aizenman, Percolation critical exponents under the triangle condition, Ann. Probab. 19 (1991), no. 4, 1520–1536. MR 1127713
- J. van den Berg and U. Fiebig, On a combinatorial conjecture concerning disjoint occurrences of events, Ann. Probab. 15 (1987), no. 1, 354–374. MR 877608
- J. van den Berg and H. Kesten, Inequalities with applications to percolation and reliability, J. Appl. Probab. 22 (1985), no. 3, 556–569. MR 799280, DOI 10.1017/s0021900200029326
- Béla Bollobás and Oliver Riordan, Percolation, Cambridge University Press, New York, 2006. MR 2283880, DOI 10.1017/CBO9781139167383
- C. Borgs, J. T. Chayes, and D. Randall, The van den Berg-Kesten-Reimer inequality: a review, Perplexing problems in probability, Progr. Probab., vol. 44, Birkhäuser Boston, Boston, MA, 1999, pp. 159–173. MR 1703130
- David Brydges and Thomas Spencer, Self-avoiding walk in $5$ or more dimensions, Comm. Math. Phys. 97 (1985), no. 1-2, 125–148. MR 782962
- R. M. Burton and M. Keane, Density and uniqueness in percolation, Comm. Math. Phys. 121 (1989), no. 3, 501–505. MR 990777
- J. T. Chayes and L. Chayes, On the upper critical dimension of Bernoulli percolation, Comm. Math. Phys. 113 (1987), no. 1, 27–48. MR 918403
- Richard Durrett, Probability: theory and examples, 2nd ed., Duxbury Press, Belmont, CA, 1996. MR 1609153
- P. Erdős and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 17–61 (English, with Russian summary). MR 125031
- Geoffrey Grimmett, Percolation, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 321, Springer-Verlag, Berlin, 1999. MR 1707339, DOI 10.1007/978-3-662-03981-6
- Takashi Hara, Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals, Ann. Probab. 36 (2008), no. 2, 530–593. MR 2393990, DOI 10.1214/009117907000000231
- Takashi Hara, Remco van der Hofstad, and Gordon Slade, Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models, Ann. Probab. 31 (2003), no. 1, 349–408. MR 1959796, DOI 10.1214/aop/1046294314
- Takashi Hara and Gordon Slade, Mean-field critical behaviour for percolation in high dimensions, Comm. Math. Phys. 128 (1990), no. 2, 333–391. MR 1043524
- Takashi Hara and Gordon Slade, The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents, J. Statist. Phys. 99 (2000), no. 5-6, 1075–1168. MR 1773141, DOI 10.1023/A:1018628503898
- T. E. Harris, A lower bound for the critical probability in a certain percolation process, Proc. Cambridge Philos. Soc. 56 (1960), 13–20. MR 115221
- Markus Heydenreich, Remco van der Hofstad, and Akira Sakai, Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk, J. Stat. Phys. 132 (2008), no. 6, 1001–1049. MR 2430773, DOI 10.1007/s10955-008-9580-5
- Remco van der Hofstad, Frank den Hollander, and Gordon Slade, Construction of the incipient infinite cluster for spread-out oriented percolation above $4+1$ dimensions, Comm. Math. Phys. 231 (2002), no. 3, 435–461. MR 1946445, DOI 10.1007/s00220-002-0728-x
- Remco van der Hofstad, Frank den Hollander, and Gordon Slade, The survival probability for critical spread-out oriented percolation above $4+1$ dimensions. I. Induction, Probab. Theory Related Fields 138 (2007), no. 3-4, 363–389. MR 2299712, DOI 10.1007/s00440-006-0028-z
- Remco van der Hofstad, Frank den Hollander, and Gordon Slade, The survival probability for critical spread-out oriented percolation above $4+1$ dimensions. II. Expansion, Ann. Inst. H. Poincaré Probab. Statist. 43 (2007), no. 5, 509–570. MR 2347096, DOI 10.1016/j.anihpb.2006.09.002
- Harry Kesten, The critical probability of bond percolation on the square lattice equals ${1\over 2}$, Comm. Math. Phys. 74 (1980), no. 1, 41–59. MR 575895
- Harry Kesten, Percolation theory for mathematicians, Progress in Probability and Statistics, vol. 2, Birkhäuser, Boston, MA, 1982. MR 692943
- Kolmogorov, A. N. (1938), Zur Lösung einer biologischen Aufgabe [German: On the solution of a problem in biology]. Izv. NII Matem. Mekh. Tomskogo Univ. 2, 7–12.
- Gady Kozma and Asaf Nachmias, The Alexander-Orbach conjecture holds in high dimensions, Invent. Math. 178 (2009), no. 3, 635–654. MR 2551766, DOI 10.1007/s00222-009-0208-4
- Iva Kozáková, Critical percolation of free product of groups, Internat. J. Algebra Comput. 18 (2008), no. 4, 683–704. MR 2428151, DOI 10.1142/S0218196708004524
- Kozáková, Iva (2008 preprint), Critical percolation on Cayley graphs of groups acting on trees, http://arxiv.org/abs/0801.4153.
- Gregory F. Lawler, Oded Schramm, and Wendelin Werner, One-arm exponent for critical 2D percolation, Electron. J. Probab. 7 (2002), no. 2, 13. MR 1887622, DOI 10.1214/EJP.v7-101
- M. V. Men′shikov, Coincidence of critical points in percolation problems, Dokl. Akad. Nauk SSSR 288 (1986), no. 6, 1308–1311 (Russian). MR 852458
- Bao Gia Nguyen, Gap exponents for percolation processes with triangle condition, J. Statist. Phys. 49 (1987), no. 1-2, 235–243. MR 923855, DOI 10.1007/BF01009960
- David Reimer, Proof of the van den Berg-Kesten conjecture, Combin. Probab. Comput. 9 (2000), no. 1, 27–32. MR 1751301, DOI 10.1017/S0963548399004113
- Akira Sakai, Mean-field behavior for the survival probability and the percolation point-to-surface connectivity, J. Statist. Phys. 117 (2004), no. 1-2, 111–130. MR 2098561, DOI 10.1023/B:JOSS.0000044061.83860.62
- Roberto H. Schonmann, Multiplicity of phase transitions and mean-field criticality on highly non-amenable graphs, Comm. Math. Phys. 219 (2001), no. 2, 271–322. MR 1833805, DOI 10.1007/s002200100417
- G. Slade, The lace expansion and its applications, Lecture Notes in Mathematics, vol. 1879, Springer-Verlag, Berlin, 2006. Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004; Edited and with a foreword by Jean Picard. MR 2239599
- Smirnov, S. (2001 preprint), Critical percolation in the plane. Available at http://www.unige. ch/~smirnov/papers/percol.ps.
- Stanislav Smirnov and Wendelin Werner, Critical exponents for two-dimensional percolation, Math. Res. Lett. 8 (2001), no. 5-6, 729–744. MR 1879816, DOI 10.4310/MRL.2001.v8.n6.a4
Bibliographic Information
- Gady Kozma
- Affiliation: The Weizmann Institute of Science, Rehovot POB 76100, Israel
- MR Author ID: 321409
- Email: gady.kozma@weizmann.ac.il
- Asaf Nachmias
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
- Email: asafnach@math.mit.edu
- Received by editor(s): November 4, 2009
- Received by editor(s) in revised form: July 21, 2010
- Published electronically: November 16, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 24 (2011), 375-409
- MSC (2010): Primary 60K35, 82B43
- DOI: https://doi.org/10.1090/S0894-0347-2010-00684-4
- MathSciNet review: 2748397