Toward the Fourier law for a weakly interacting anharmonic crystal
HTML articles powered by AMS MathViewer
- by Carlangelo Liverani and Stefano Olla;
- J. Amer. Math. Soc. 25 (2012), 555-583
- DOI: https://doi.org/10.1090/S0894-0347-2011-00724-8
- Published electronically: December 1, 2011
- PDF | Request permission
Abstract:
For a system of weakly interacting anharmonic oscillators, perturbed by an energy-preserving stochastic dynamics, we prove an autonomous (stochastic) evolution for the energies at large time scale (with respect to the coupling parameter). It turns out that this macroscopic evolution is given by the so-called conservative (nongradient) Ginzburg-Landau system of stochastic differential equations. The proof exploits hypocoercivity and hypoellipticity properties of the uncoupled dynamics.References
- Cédric Bernardin and Stefano Olla, Fourier’s law for a microscopic model of heat conduction, J. Stat. Phys. 121 (2005), no. 3-4, 271–289. MR 2185330, DOI 10.1007/s10955-005-7578-9
- F. Bonetto, J. L. Lebowitz, and L. Rey-Bellet, Fourier’s law: a challenge to theorists, Mathematical physics 2000, Imp. Coll. Press, London, 2000, pp. 128–150. MR 1773043, DOI 10.1142/9781848160224_{0}008
- Sandra Cerrai and Philippe Clément, Well-posedness of the martingale problem for some degenerate diffusion processes occurring in dynamics of populations, Bull. Sci. Math. 128 (2004), no. 5, 355–389. MR 2066345, DOI 10.1016/j.bulsci.2004.03.004
- Dmitry Dolgopyat, Carlangelo Liverani, Energy transfer in a fast-slow Hamiltonian system, Communications in Mathematical Physics, 308 (2011), N. 1, 201-225.
- M. I. Freĭdlin, Fluctuations in dynamical systems with averaging, Dokl. Akad. Nauk SSSR 226 (1976), no. 2, 273–276 (Russian). MR 410796
- M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, Springer-Verlag, New York, 1998. Translated from the 1979 Russian original by Joseph Szücs. MR 1652127, DOI 10.1007/978-1-4612-0611-8
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- Yuri Kifer, Some recent advances in averaging, Modern dynamical systems and applications, Cambridge Univ. Press, Cambridge, 2004, pp. 385–403. MR 2093312
- T. Komorowski, C. Landim, S. Olla, Fluctuations in Markov Processes, Springer, to appear (2012).
- S. Olla, M. Sasada, Macroscopic energy diffusion for a chain of anharmonic oscillators, arXiv 2011 vol. math-ph, http://arxiv.org/abs/1109.5297v1.
- S. Olla, S. R. S. Varadhan, and H.-T. Yau, Hydrodynamical limit for a Hamiltonian system with weak noise, Comm. Math. Phys. 155 (1993), no. 3, 523–560. MR 1231642
- Z. Rieder, J. L. Lebowitz, and E. Lieb, Properties of a Harmonic Crystal in a Stationary Nonequilibrium State, J. Math. Phys. 8 (1967), 1073.
- Sunder Sethuraman, S. R. S. Varadhan, and Horng-Tzer Yau, Diffusive limit of a tagged particle in asymmetric simple exclusion processes, Comm. Pure Appl. Math. 53 (2000), no. 8, 972–1006. MR 1755948, DOI 10.1002/1097-0312(200008)53:8<972::AID-CPA2>3.0.CO;2-
- S. R. S. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions. II, Asymptotic problems in probability theory: stochastic models and diffusions on fractals (Sanda/Kyoto, 1990) Pitman Res. Notes Math. Ser., vol. 283, Longman Sci. Tech., Harlow, 1993, pp. 75–128. MR 1354152
- Cédric Villani, Hypocoercivity, Mem. Amer. Math. Soc. 202 (2009), no. 950, iv+141. MR 2562709, DOI 10.1090/S0065-9266-09-00567-5
Bibliographic Information
- Carlangelo Liverani
- Affiliation: Dipartimento di Matematica, II Università di Roma (Tor Vergata), Via della Ricerca Scientifica, 00133 Roma, Italy
- Email: liverani@mat.uniroma2.it
- Stefano Olla
- Affiliation: CEREMADE, UMR CNRS 7534, Université Paris-Dauphine, 75775 Paris-Cedex 16, France and INRIA - Université Paris Est, CERMICS, Projet MICMAC, Ecole des Ponts ParisTech, 6 & 8 Av. Pascal, 77455 Marne-la-Vallée Cedex 2, France
- Email: olla@ceremade.dauphine.fr
- Received by editor(s): January 18, 2011
- Received by editor(s) in revised form: November 6, 2011
- Published electronically: December 1, 2011
- Additional Notes: This paper has been partially supported by the European Advanced Grant Macroscopic Laws and Dynamical Systems (MALADY) (ERC AdG 246953), by Agence Nationale de la Recherche, under grant ANR-07-BLAN-2-184264 (LHMSHE), and by MIUR under the grant PRIN 2007B3RBEY
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 25 (2012), 555-583
- MSC (2010): Primary 82C70, 60F17, 80A20
- DOI: https://doi.org/10.1090/S0894-0347-2011-00724-8
- MathSciNet review: 2869027