Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.79.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

$p$-adic periods and derived de Rham cohomology
HTML articles powered by AMS MathViewer

by A. Beilinson PDF
J. Amer. Math. Soc. 25 (2012), 715-738 Request permission

Abstract:

We show that derived de Rham cohomology of Illusie satisfies the $p$-adic PoincarĂ© lemma in h-topology. This yields a new construction of the $p$-adic period map and a simple proof of Fontaine’s C$_{\text {dR}}$ conjecture.
References
  • A. Beilinson, On the crystalline period map, math. AG 1111.3316 (2011).
  • Laurent Berger, ReprĂ©sentations $p$-adiques et Ă©quations diffĂ©rentielles, Invent. Math. 148 (2002), no. 2, 219–284 (French, with English summary). MR 1906150, DOI 10.1007/s002220100202
  • Bhargav Bhatt, Derived direct summands, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–Princeton University. MR 2753219
  • B. Bhatt, $p$-adic derived de Rham cohomology, 2012.
  • P. Colmez, Les nombres algĂ©briques sont denses dans B$^{+}_{\text {dR}}$, PĂ©riodes $p$-adiques, AstĂ©risque 223, Soc. Math. France, 1994, pp. 103–111.
  • B. Conrad, Cohomological descent, http://math.stanford.edu/˜conrad/.
  • Pierre Deligne, ThĂ©orie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5–77 (French). MR 498552
  • A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93. MR 1423020
  • A. Johan de Jong, Families of curves and alterations, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 2, 599–621. MR 1450427
  • Gerd Faltings, $p$-adic Hodge theory, J. Amer. Math. Soc. 1 (1988), no. 1, 255–299. MR 924705, DOI 10.1090/S0894-0347-1988-0924705-1
  • Gerd Faltings, Almost Ă©tale extensions, AstĂ©risque 279 (2002), 185–270. Cohomologies $p$-adiques et applications arithmĂ©tiques, II. MR 1922831
  • Gerd Faltings and Ching-Li Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, Springer-Verlag, Berlin, 1990. With an appendix by David Mumford. MR 1083353, DOI 10.1007/978-3-662-02632-8
  • L. Fargues, Letter to L. Illusie, 2010.
  • Jean-Marc Fontaine, Sur certains types de reprĂ©sentations $p$-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate, Ann. of Math. (2) 115 (1982), no. 3, 529–577 (French). MR 657238, DOI 10.2307/2007012
  • Jean-Marc Fontaine, Formes diffĂ©rentielles et modules de Tate des variĂ©tĂ©s abĂ©liennes sur les corps locaux, Invent. Math. 65 (1981/82), no. 3, 379–409 (French). MR 643559, DOI 10.1007/BF01396625
  • Jean-Marc Fontaine, Le corps des pĂ©riodes $p$-adiques, AstĂ©risque 223 (1994), 59–111 (French). With an appendix by Pierre Colmez; PĂ©riodes $p$-adiques (Bures-sur-Yvette, 1988). MR 1293971
  • Jean-Marc Fontaine, ReprĂ©sentations $p$-adiques semi-stables, AstĂ©risque 223 (1994), 113–184 (French). With an appendix by Pierre Colmez; PĂ©riodes $p$-adiques (Bures-sur-Yvette, 1988). MR 1293972
  • A. Grothendieck, On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 95–103. MR 199194
  • ThĂ©orie des topos et cohomologie Ă©tale des schĂ©mas. Tome 2, Lecture Notes in Mathematics, Vol. 270, Springer-Verlag, Berlin-New York, 1972 (French). SĂ©minaire de GĂ©omĂ©trie AlgĂ©brique du Bois-Marie 1963–1964 (SGA 4); DirigĂ© par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. MR 0354653
  • V. A. Hinich and V. V. Schechtman, On homotopy limit of homotopy algebras, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 240–264. MR 923138, DOI 10.1007/BFb0078370
  • Luc Illusie, Complexe cotangent et dĂ©formations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin-New York, 1971 (French). MR 0491680
  • Luc Illusie, Complexe cotangent et dĂ©formations. II, Lecture Notes in Mathematics, Vol. 283, Springer-Verlag, Berlin-New York, 1972 (French). MR 0491681
  • Uwe Jannsen, On the $l$-adic cohomology of varieties over number fields and its Galois cohomology, Galois groups over $\textbf {Q}$ (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 315–360. MR 1012170, DOI 10.1007/978-1-4613-9649-9_{5}
  • Kazuya Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191–224. MR 1463703
  • Kazuya Kato, Toric singularities, Amer. J. Math. 116 (1994), no. 5, 1073–1099. MR 1296725, DOI 10.2307/2374941
  • WiesƂawa NizioƂ, Semistable conjecture via $K$-theory, Duke Math. J. 141 (2008), no. 1, 151–178. MR 2372150, DOI 10.1215/S0012-7094-08-14114-6
  • WiesƂawa NizioƂ, $p$-adic motivic cohomology in arithmetic, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., ZĂŒrich, 2006, pp. 459–472. MR 2275605
  • WiesƂawa NizioƂ, On uniqueness of $p$-adic period morphisms, Pure Appl. Math. Q. 5 (2009), no. 1, 163–212. MR 2520458, DOI 10.4310/PAMQ.2009.v5.n1.a5
  • Martin C. Olsson, The logarithmic cotangent complex, Math. Ann. 333 (2005), no. 4, 859–931. MR 2195148, DOI 10.1007/s00208-005-0707-6
  • M. Raynaud, SpĂ©cialisation du foncteur de Picard, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 27–76 (French). MR 282993
  • Michel Raynaud and Laurent Gruson, CritĂšres de platitude et de projectivitĂ©. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1–89 (French). MR 308104, DOI 10.1007/BF01390094
  • ThĂ©orie des topos et cohomologie Ă©tale des schĂ©mas. Tome 2, Lecture Notes in Mathematics, Vol. 270, Springer-Verlag, Berlin-New York, 1972 (French). SĂ©minaire de GĂ©omĂ©trie AlgĂ©brique du Bois-Marie 1963–1964 (SGA 4); DirigĂ© par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. MR 0354653
  • Andrei Suslin and Vladimir Voevodsky, Singular homology of abstract algebraic varieties, Invent. Math. 123 (1996), no. 1, 61–94. MR 1376246, DOI 10.1007/BF01232367
  • Michael Temkin, Stable modification of relative curves, J. Algebraic Geom. 19 (2010), no. 4, 603–677. MR 2669727, DOI 10.1090/S1056-3911-2010-00560-7
  • Takeshi Tsuji, $p$-adic Ă©tale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999), no. 2, 233–411. MR 1705837, DOI 10.1007/s002220050330
  • Takeshi Tsuji, Semi-stable conjecture of Fontaine-Jannsen: a survey, AstĂ©risque 279 (2002), 323–370. Cohomologies $p$-adiques et applications arithmĂ©tiques, II. MR 1922833
  • J.-L. Verdier, Topologies et faisceaux, ThĂ©orie des topos et cohomologie Ă©tale de schĂ©mas (SGA 4), Tome 1, Lect. Notes in Math. 269, Springer-Verlag, 1972, pp. 219–264.
  • J.-L. Verdier, FonctorialitĂ© de catĂ©gories de faisceaux, ThĂ©orie des topos et cohomologie Ă©tale de schĂ©mas (SGA 4), Tome 1, Lect. Notes in Math. 269, Springer-Verlag, 1972, pp. 265–298.
  • J.-L. Verdier, Cohomologie dans les topos, ThĂ©orie des topos et cohomologie Ă©tale de schĂ©mas (SGA 4), Tome 2, Lect. Notes in Math. 270, Springer-Verlag, 1972, pp. 1–82.
  • G. Yamashita, ThĂ©orie de Hodge $p$-adique pour les variĂ©tĂ©s ouvertes, C. R. A. S. 349 (21–22) (2011), 1127–1130.
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 14F30, 14F40, 14F20
  • Retrieve articles in all journals with MSC (2010): 14F30, 14F40, 14F20
Additional Information
  • A. Beilinson
  • Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
  • MR Author ID: 33735
  • Email: sasha@math.uchicago.edu
  • Received by editor(s): February 22, 2011
  • Received by editor(s) in revised form: November 16, 2011, and January 5, 2012
  • Published electronically: January 27, 2012
  • Additional Notes: The author was supported in part by NSF grant DMS-1001660.

  • Dedicated: To Irene
  • © Copyright 2012 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: J. Amer. Math. Soc. 25 (2012), 715-738
  • MSC (2010): Primary 14F30, 14F40; Secondary 14F20
  • DOI: https://doi.org/10.1090/S0894-0347-2012-00729-2
  • MathSciNet review: 2904571