Heisenberg algebras and rational double affine Hecke algebras
HTML articles powered by AMS MathViewer
- by P. Shan and E. Vasserot;
- J. Amer. Math. Soc. 25 (2012), 959-1031
- DOI: https://doi.org/10.1090/S0894-0347-2012-00738-3
- Published electronically: April 23, 2012
- PDF | Request permission
Abstract:
We relate the filtration by the support on the Grothendieck group $[\mathcal {O}]$ of the category $\mathcal {O}$ of cyclotomic rational double affine Hecke algebras to a representation-theoretic grading on $[\mathcal {O}]$, defined using the action of an affine Lie algebra and of a Heisenberg algebra on the Fock space. This implies a recent conjecture of Etingof. The proof uses a categorification of the Heisenberg action, which is new, and a categorification of the affine Lie algebra action, which was introduced by the first author in an earlier paper.References
- Henning Haahr Andersen, Patrick Polo, and Ke Xin Wen, Representations of quantum algebras, Invent. Math. 104 (1991), no. 1, 1–59. MR 1094046, DOI 10.1007/BF01245066
- Roman Bezrukavnikov and Pavel Etingof, Parabolic induction and restriction functors for rational Cherednik algebras, Selecta Math. (N.S.) 14 (2009), no. 3-4, 397–425. MR 2511190, DOI 10.1007/s00029-009-0507-z
- Yuri Berest, Pavel Etingof, and Victor Ginzburg, Finite-dimensional representations of rational Cherednik algebras, Int. Math. Res. Not. 19 (2003), 1053–1088. MR 1961261, DOI 10.1155/S1073792803210205
- R. W. Carter, Lie algebras of finite and affine type, Cambridge Studies in Advanced Mathematics, vol. 96, Cambridge University Press, Cambridge, 2005. MR 2188930, DOI 10.1017/CBO9780511614910
- Ivan Cherednik, Double affine Hecke algebras, London Mathematical Society Lecture Note Series, vol. 319, Cambridge University Press, Cambridge, 2005. MR 2133033, DOI 10.1017/CBO9780511546501
- P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195 (French). MR 1106898
- Richard Dipper and Stephen Donkin, Quantum $\textrm {GL}_n$, Proc. London Math. Soc. (3) 63 (1991), no. 1, 165–211. MR 1105721, DOI 10.1112/plms/s3-63.1.165
- Richard Dipper and Gordon James, $q$-tensor space and $q$-Weyl modules, Trans. Amer. Math. Soc. 327 (1991), no. 1, 251–282. MR 1012527, DOI 10.1090/S0002-9947-1991-1012527-1
- S. Donkin, The $q$-Schur algebra, London Mathematical Society Lecture Note Series, vol. 253, Cambridge University Press, Cambridge, 1998. MR 1707336, DOI 10.1017/CBO9780511600708
- Stephen Doty and Anthony Giaquinto, Presenting Schur algebras, Int. Math. Res. Not. 36 (2002), 1907–1944. MR 1920169, DOI 10.1155/S1073792802201026
- Etingof, P., Symplectic reflection algebras and affine Lie algebras, arXiv:1011.4584.
- Igor B. Frenkel, Naihuan Jing, and Weiqiang Wang, Vertex representations via finite groups and the McKay correspondence, Internat. Math. Res. Notices 4 (2000), 195–222. MR 1747618, DOI 10.1155/S107379280000012X
- Victor Ginzburg, On primitive ideals, Selecta Math. (N.S.) 9 (2003), no. 3, 379–407. MR 2006573, DOI 10.1007/s00029-003-0338-2
- Victor Ginzburg, Nicolas Guay, Eric Opdam, and Raphaël Rouquier, On the category $\scr O$ for rational Cherednik algebras, Invent. Math. 154 (2003), no. 3, 617–651. MR 2018786, DOI 10.1007/s00222-003-0313-8
- I. G. Gordon, Quiver varieties, category $\scr O$ for rational Cherednik algebras, and Hecke algebras, Int. Math. Res. Pap. IMRP 3 (2008), Art. ID rpn006, 69. MR 2457847
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- Michio Jimbo, A $q$-analogue of $U({\mathfrak {g}}{\mathfrak {l}}(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247–252. MR 841713, DOI 10.1007/BF00400222
- Michio Jimbo, Kailash C. Misra, Tetsuji Miwa, and Masato Okado, Combinatorics of representations of $U_q(\widehat {{\mathfrak {s}}{\mathfrak {l}}}(n))$ at $q=0$, Comm. Math. Phys. 136 (1991), no. 3, 543–566. MR 1099695
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1994. With a chapter in French by Christian Houzel; Corrected reprint of the 1990 original. MR 1299726
- Alexander Kleshchev, Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, vol. 163, Cambridge University Press, Cambridge, 2005. MR 2165457, DOI 10.1017/CBO9780511542800
- A. N. Kirillov and N. Reshetikhin, $q$-Weyl group and a multiplicative formula for universal $R$-matrices, Comm. Math. Phys. 134 (1990), no. 2, 421–431. MR 1081014, DOI 10.1007/BF02097710
- Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1923198, DOI 10.1007/978-1-4612-0105-2
- Sinéad Lyle and Andrew Mathas, Blocks of cyclotomic Hecke algebras, Adv. Math. 216 (2007), no. 2, 854–878. MR 2351381, DOI 10.1016/j.aim.2007.06.008
- Bernard Leclerc and Hyohe Miyachi, Some closed formulas for canonical bases of Fock spaces, Represent. Theory 6 (2002), 290–312. MR 1927956, DOI 10.1090/S1088-4165-02-00136-X
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Vanessa Miemietz, On representations of affine Hecke algebras of type $B$, Algebr. Represent. Theory 11 (2008), no. 4, 369–405. MR 2417511, DOI 10.1007/s10468-008-9086-5
- Tomoki Nakanishi and Akihiro Tsuchiya, Level-rank duality of WZW models in conformal field theory, Comm. Math. Phys. 144 (1992), no. 2, 351–372. MR 1152377, DOI 10.1007/BF02101097
- Andrew Pressley and Graeme Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR 900587
- Brian Parshall and Jian Pan Wang, Quantum linear groups, Mem. Amer. Math. Soc. 89 (1991), no. 439, vi+157. MR 1048073, DOI 10.1090/memo/0439
- Raphaël Rouquier, $q$-Schur algebras and complex reflection groups, Mosc. Math. J. 8 (2008), no. 1, 119–158, 184 (English, with English and Russian summaries). MR 2422270, DOI 10.17323/1609-4514-2008-8-1-119-158
- Peng Shan, Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 1, 147–182 (English, with English and French summaries). MR 2760196, DOI 10.24033/asens.2141
- Takeshi Suzuki, Double affine Hecke algebras, conformal coinvariants and Kostka polynomials, C. R. Math. Acad. Sci. Paris 343 (2006), no. 6, 383–386 (English, with English and French summaries). MR 2259877, DOI 10.1016/j.crma.2006.08.009
- Denis Uglov, Canonical bases of higher-level $q$-deformed Fock spaces and Kazhdan-Lusztig polynomials, Physical combinatorics (Kyoto, 1999) Progr. Math., vol. 191, Birkhäuser Boston, Boston, MA, 2000, pp. 249–299. MR 1768086
- M. Varagnolo and E. Vasserot, Cyclotomic double affine Hecke algebras and affine parabolic category $\scr O$, Adv. Math. 225 (2010), no. 3, 1523–1588. MR 2673739, DOI 10.1016/j.aim.2010.03.028
- Wilcox, S., Supports of representations of the rational Cherednik algebra of type A, arXiv:1012.2585.
Bibliographic Information
- P. Shan
- Affiliation: Université Paris 7, UMR CNRS 7586, F-75013 Paris, France
- Email: shan@math.jussieu.fr
- E. Vasserot
- Affiliation: Université Paris 7, UMR CNRS 7586, F-75013 Paris, France
- Email: vasserot@math.jussieu.fr
- Received by editor(s): March 22, 2011
- Received by editor(s) in revised form: October 30, 2011, and February 12, 2012
- Published electronically: April 23, 2012
- © Copyright 2012 American Mathematical Society
- Journal: J. Amer. Math. Soc. 25 (2012), 959-1031
- MSC (2010): Primary 06B15, 33D80
- DOI: https://doi.org/10.1090/S0894-0347-2012-00738-3
- MathSciNet review: 2947944