Commutators on $L_p$, $1\leq p <\infty$
Authors:
Detelin Dosev, William B. Johnson and Gideon Schechtman
Journal:
J. Amer. Math. Soc. 26 (2013), 101-127
MSC (2010):
Primary 47B47; Secondary 46E30
DOI:
https://doi.org/10.1090/S0894-0347-2012-00748-6
Published electronically:
August 21, 2012
MathSciNet review:
2983007
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The operators on $L_p=L_p[0,1]$, $1\leq p<\infty$, which are not commutators are those of the form $\lambda I + S$, where $\lambda \neq 0$ and $S$ belongs to the largest ideal in $\mathcal {L}(L_p)$. The proof involves new structural results for operators on $L_p$ which are of independent interest.
- Constantin Apostol, Commutators on $l^{p}$-spaces, Rev. Roumaine Math. Pures Appl. 17 (1972), 1513β1534. MR 336432
- Constantin Apostol, Commutators on $c_{0}$-spaces and on $l^{\infty }$-spaces, Rev. Roumaine Math. Pures Appl. 18 (1973), 1025β1032. MR 336433
- Arlen Brown and Carl Pearcy, Structure of commutators of operators, Ann. of Math. (2) 82 (1965), 112β127. MR 178354, DOI https://doi.org/10.2307/1970564
- Detelin T. Dosev, Commutators on $l_1$, J. Funct. Anal. 256 (2009), no. 11, 3490β3509. MR 2514050, DOI https://doi.org/10.1016/j.jfa.2009.03.006
- D. Dosev and W. B. Johnson, Commutators on $\ell _\infty $, Bull. Lond. Math. Soc. 42 (2010), no. 1, 155β169. MR 2586976, DOI https://doi.org/10.1112/blms/bdp110
- P. Enflo and T. W. Starbird, Subspaces of $L^{1}$ containing $L^{1}$, Studia Math. 65 (1979), no. 2, 203β225. MR 557491, DOI https://doi.org/10.4064/sm-65-2-203-225
- J. L. B. Gamlen and R. J. Gaudet, On subsequences of the Haar system in $L_{p}$ $[1,\,1](1\leq p\leq \infty )$, Israel J. Math. 15 (1973), 404β413. MR 328575, DOI https://doi.org/10.1007/BF02757079
- W. B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. 19 (1979), no. 217, v+298. MR 527010, DOI https://doi.org/10.1090/memo/0217
- N. J. Kalton, The endomorphisms of $L_{p}(0\leq p\leq i)$, Indiana Univ. Math. J. 27 (1978), no. 3, 353β381. MR 470670, DOI https://doi.org/10.1512/iumj.1978.27.27027
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin-New York, 1977. Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR 0500056
- E. M. NikiΕ‘in, Resonance theorems and superlinear operators, Uspehi Mat. Nauk 25 (1970), no. 6(156), 129β191 (Russian). MR 0296584
- Haskell P. Rosenthal, Embeddings of $L^{1}$ in $L^{1}$, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 335β349. MR 737412, DOI https://doi.org/10.1090/conm/026/737412
- M. Tarbard, Hereditarily indecomposable, separable $\mathcal {L}_\infty$ spaces with $\ell _1$ dual having few operators, but not very few operators, J. London Math. Soc. (2012) : jdr066v1-jdr066
- Aurel Wintner, The unboundedness of quantum-mechanical matrices, Phys. Rev. (2) 71 (1947), 738β739. MR 20724
Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 47B47, 46E30
Retrieve articles in all journals with MSC (2010): 47B47, 46E30
Additional Information
Detelin Dosev
Affiliation:
Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel
Email:
dosevd@weizmann.ac.il
William B. Johnson
Affiliation:
Department of Mathematics, Texas A&M University, College Station, Texas 77843
MR Author ID:
95220
Email:
johnson@math.tamu.edu
Gideon Schechtman
Affiliation:
Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel
MR Author ID:
155695
Email:
gideon@weizmann.ac.il
Received by editor(s):
February 2, 2011
Received by editor(s) in revised form:
May 30, 2012
Published electronically:
August 21, 2012
Additional Notes:
The first author was Young Investigator, NSF Workshop in Analysis and Probability, Texas A&M University
The second author was supported in part by NSF DMS-1001321 and U.S.-Israel Binational Science Foundation
The third author was supported in part by U.S.-Israel Binational Science Foundation. Participant NSF Workshop in Analysis and Probability, Texas A&M University
Dedicated:
Dedicated to the memory of Nigel Kalton
Article copyright:
© Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.