Commutators on $L_p$, $1\leq p <\infty$
HTML articles powered by AMS MathViewer
- by Detelin Dosev, William B. Johnson and Gideon Schechtman;
- J. Amer. Math. Soc. 26 (2013), 101-127
- DOI: https://doi.org/10.1090/S0894-0347-2012-00748-6
- Published electronically: August 21, 2012
- PDF | Request permission
Abstract:
The operators on $L_p=L_p[0,1]$, $1\leq p<\infty$, which are not commutators are those of the form $\lambda I + S$, where $\lambda \neq 0$ and $S$ belongs to the largest ideal in $\mathcal {L}(L_p)$. The proof involves new structural results for operators on $L_p$ which are of independent interest.References
- Constantin Apostol, Commutators on $l^{p}$-spaces, Rev. Roumaine Math. Pures Appl. 17 (1972), 1513β1534. MR 336432
- Constantin Apostol, Commutators on $c_{0}$-spaces and on $l^{\infty }$-spaces, Rev. Roumaine Math. Pures Appl. 18 (1973), 1025β1032. MR 336433
- Arlen Brown and Carl Pearcy, Structure of commutators of operators, Ann. of Math. (2) 82 (1965), 112β127. MR 178354, DOI 10.2307/1970564
- Detelin T. Dosev, Commutators on $l_1$, J. Funct. Anal. 256 (2009), no.Β 11, 3490β3509. MR 2514050, DOI 10.1016/j.jfa.2009.03.006
- D. Dosev and W. B. Johnson, Commutators on $\ell _\infty$, Bull. Lond. Math. Soc. 42 (2010), no.Β 1, 155β169. MR 2586976, DOI 10.1112/blms/bdp110
- P. Enflo and T. W. Starbird, Subspaces of $L^{1}$ containing $L^{1}$, Studia Math. 65 (1979), no.Β 2, 203β225. MR 557491, DOI 10.4064/sm-65-2-203-225
- J. L. B. Gamlen and R. J. Gaudet, On subsequences of the Haar system in $L_{p}$ $[1,\,1](1\leq p\leq \infty )$, Israel J. Math. 15 (1973), 404β413. MR 328575, DOI 10.1007/BF02757079
- W. B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. 19 (1979), no.Β 217, v+298. MR 527010, DOI 10.1090/memo/0217
- N. J. Kalton, The endomorphisms of $L_{p}(0\leq p\leq i)$, Indiana Univ. Math. J. 27 (1978), no.Β 3, 353β381. MR 470670, DOI 10.1512/iumj.1978.27.27027
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 500056, DOI 10.1007/978-3-642-66557-8
- E. M. NikiΕ‘in, Resonance theorems and superlinear operators, Uspehi Mat. Nauk 25 (1970), no.Β 6(156), 129β191 (Russian). MR 296584
- Haskell P. Rosenthal, Embeddings of $L^{1}$ in $L^{1}$, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp.Β 335β349. MR 737412, DOI 10.1090/conm/026/737412
- M. Tarbard, Hereditarily indecomposable, separable $\mathcal {L}_\infty$ spaces with $\ell _1$ dual having few operators, but not very few operators, J. London Math. Soc. (2012) : jdr066v1-jdr066
- Aurel Wintner, The unboundedness of quantum-mechanical matrices, Phys. Rev. (2) 71 (1947), 738β739. MR 20724, DOI 10.1103/PhysRev.71.738.2
Bibliographic Information
- Detelin Dosev
- Affiliation: Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Email: dosevd@weizmann.ac.il
- William B. Johnson
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 95220
- Email: johnson@math.tamu.edu
- Gideon Schechtman
- Affiliation: Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel
- MR Author ID: 155695
- Email: gideon@weizmann.ac.il
- Received by editor(s): February 2, 2011
- Received by editor(s) in revised form: May 30, 2012
- Published electronically: August 21, 2012
- Additional Notes: The first author was Young Investigator, NSF Workshop in Analysis and Probability, Texas A&M University
The second author was supported in part by NSF DMS-1001321 and U.S.-Israel Binational Science Foundation
The third author was supported in part by U.S.-Israel Binational Science Foundation. Participant NSF Workshop in Analysis and Probability, Texas A&M University - © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 26 (2013), 101-127
- MSC (2010): Primary 47B47; Secondary 46E30
- DOI: https://doi.org/10.1090/S0894-0347-2012-00748-6
- MathSciNet review: 2983007
Dedicated: Dedicated to the memory of Nigel Kalton