## Equidistribution and counting for orbits of geometrically finite hyperbolic groups

HTML articles powered by AMS MathViewer

- by Hee Oh and Nimish A. Shah
- J. Amer. Math. Soc.
**26**(2013), 511-562 - DOI: https://doi.org/10.1090/S0894-0347-2012-00749-8
- Published electronically: October 2, 2012
- PDF | Request permission

## Abstract:

Let $G$ be the identity component of $\mathrm {SO}(n,1)$, $n\ge 2$, acting linearly on a finite-dimensional real vector space $V$. Consider a vector $w_0\in V$ such that the stabilizer of $w_0$ is a symmetric subgroup of $G$ or the stabilizer of the line $\mathbb {R} w_0$ is a parabolic subgroup of $G$. For any non-elementary discrete subgroup $\Gamma$ of $G$ with its orbit $w_0\Gamma$ discrete, we compute an asymptotic formula (as $T\to \infty$) for the number of points in $w_0\Gamma$ of norm at most $T$, provided that the Bowen-Margulis-Sullivan measure on $\mathrm {T}^1(\Gamma \backslash \mathbb {H}^n)$ and the $\Gamma$-skinning size of $w_0$ are finite.

The main ergodic ingredient in our approach is the description for the limiting distribution of the orthogonal translates of a totally geodesically immersed closed submanifold of $\Gamma \backslash \mathbb {H}^n$. We also give a criterion on the finiteness of the $\Gamma$-skinning size of $w_0$ for $\Gamma$ geometrically finite.

## References

- Martine Babillot,
*On the mixing property for hyperbolic systems*, Israel J. Math.**129**(2002), 61â76. MR**1910932**, DOI 10.1007/BF02773153 - Alan F. Beardon,
*The geometry of discrete groups*, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR**698777**, DOI 10.1007/978-1-4612-1146-4 - Yves Benoist and Hee Oh. Effective equidistribution of $S$-integral points on symmetric varieties
*To appear in Annales de LâInstitut Fourier*, arXiv:0706.1621. - B. H. Bowditch,
*Geometrical finiteness for hyperbolic groups*, J. Funct. Anal.**113**(1993), no.Â 2, 245â317. MR**1218098**, DOI 10.1006/jfan.1993.1052 - Rufus Bowen,
*Periodic points and measures for Axiom $A$ diffeomorphisms*, Trans. Amer. Math. Soc.**154**(1971), 377â397. MR**282372**, DOI 10.1090/S0002-9947-1971-0282372-0 - Marc Burger,
*Horocycle flow on geometrically finite surfaces*, Duke Math. J.**61**(1990), no.Â 3, 779â803. MR**1084459**, DOI 10.1215/S0012-7094-90-06129-0 - FranĂ§oise Dalâbo,
*Topologie du feuilletage fortement stable*, Ann. Inst. Fourier (Grenoble)**50**(2000), no.Â 3, 981â993 (French, with English and French summaries). MR**1779902**, DOI 10.5802/aif.1781 - FranĂ§oise Dalâbo, Jean-Pierre Otal, and Marc PeignĂ©,
*SĂ©ries de PoincarĂ© des groupes gĂ©omĂ©triquement finis*, Israel J. Math.**118**(2000), 109â124 (French, with English summary). MR**1776078**, DOI 10.1007/BF02803518 - W. Duke, Z. Rudnick, and P. Sarnak,
*Density of integer points on affine homogeneous varieties*, Duke Math. J.**71**(1993), no.Â 1, 143â179. MR**1230289**, DOI 10.1215/S0012-7094-93-07107-4 - Alex Eskin and Curt McMullen,
*Mixing, counting, and equidistribution in Lie groups*, Duke Math. J.**71**(1993), no.Â 1, 181â209. MR**1230290**, DOI 10.1215/S0012-7094-93-07108-6 - L. Flaminio and R. J. Spatzier,
*Geometrically finite groups, Patterson-Sullivan measures and Ratnerâs rigidity theorem*, Invent. Math.**99**(1990), no.Â 3, 601â626. MR**1032882**, DOI 10.1007/BF01234433 - Alexander Gorodnik and Hee Oh,
*Orbits of discrete subgroups on a symmetric space and the Furstenberg boundary*, Duke Math. J.**139**(2007), no.Â 3, 483â525. MR**2350851**, DOI 10.1215/S0012-7094-07-13933-4 - Alexander Gorodnik, Hee Oh, and Nimish Shah,
*Integral points on symmetric varieties and Satake compactifications*, Amer. J. Math.**131**(2009), no.Â 1, 1â57. MR**2488484**, DOI 10.1353/ajm.0.0034 - Alexander Gorodnik, Hee Oh, and Nimish Shah,
*Strong wavefront lemma and counting lattice points in sectors*, Israel J. Math.**176**(2010), 419â444. MR**2653201**, DOI 10.1007/s11856-010-0035-8 - D. Y. Kleinbock and G. A. Margulis,
*Bounded orbits of nonquasiunipotent flows on homogeneous spaces*, SinaÄâs Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, vol. 171, Amer. Math. Soc., Providence, RI, 1996, pp.Â 141â172. MR**1359098**, DOI 10.1090/trans2/171/11 - Alex Kontorovich and Hee Oh. Almost prime Pythagorean triples in thin orbits.
*To appear in Crelle*, arXiv:1001.0370. - Alex Kontorovich and Hee Oh,
*Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds*, J. Amer. Math. Soc.**24**(2011), no.Â 3, 603â648. With an appendix by Oh and Nimish Shah. MR**2784325**, DOI 10.1090/S0894-0347-2011-00691-7 - Steven P. Lalley,
*Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits*, Acta Math.**163**(1989), no.Â 1-2, 1â55. MR**1007619**, DOI 10.1007/BF02392732 - Peter D. Lax and Ralph S. Phillips,
*The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces*, J. Functional Analysis**46**(1982), no.Â 3, 280â350. MR**661875**, DOI 10.1016/0022-1236(82)90050-7 - Grigoriy A. Margulis,
*On some aspects of the theory of Anosov systems*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows; Translated from the Russian by Valentina Vladimirovna Szulikowska. MR**2035655**, DOI 10.1007/978-3-662-09070-1 - Bernard Maskit,
*Kleinian groups*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR**959135** - Hee Oh,
*Dynamics on geometrically finite hyperbolic manifolds with applications to Apollonian circle packings and beyond*, Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi, 2010, pp.Â 1308â1331. MR**2827842** - Hee Oh and Nimish Shah,
*The asymptotic distribution of circles in the orbits of Kleinian groups*, Invent. Math.**187**(2012), no.Â 1, 1â35. MR**2874933**, DOI 10.1007/s00222-011-0326-7 - Hee Oh and Nimish Shah. Counting visible circles on the sphere and Kleinian groups.
*Preprint*, arXiv:1004.2129. - Hee Oh and Nimish Shah. Limits of translates of divergent geodesics and integral points on one-sheeted hyperboloids.
*Preprint*, arXiv:1104.4988. - S. J. Patterson,
*The limit set of a Fuchsian group*, Acta Math.**136**(1976), no.Â 3-4, 241â273. MR**450547**, DOI 10.1007/BF02392046 - Marc PeignĂ©,
*On the Patterson-Sullivan measure of some discrete group of isometries*, Israel J. Math.**133**(2003), 77â88. MR**1968423**, DOI 10.1007/BF02773062 - Burton Randol,
*The behavior under projection of dilating sets in a covering space*, Trans. Amer. Math. Soc.**285**(1984), no.Â 2, 855â859. MR**752507**, DOI 10.1090/S0002-9947-1984-0752507-0 - M. S. Raghunathan,
*Discrete subgroups of Lie groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR**0507234**, DOI 10.1007/978-3-642-86426-1 - Marina Ratner,
*On Raghunathanâs measure conjecture*, Ann. of Math. (2)**134**(1991), no.Â 3, 545â607. MR**1135878**, DOI 10.2307/2944357 - Thomas Roblin,
*ErgodicitĂ© et Ă©quidistribution en courbure nĂ©gative*, MĂ©m. Soc. Math. Fr. (N.S.)**95**(2003), vi+96 (French, with English and French summaries). MR**2057305**, DOI 10.24033/msmf.408 - Daniel J. Rudolph,
*Ergodic behaviour of Sullivanâs geometric measure on a geometrically finite hyperbolic manifold*, Ergodic Theory Dynam. Systems**2**(1982), no.Â 3-4, 491â512 (1983). MR**721736**, DOI 10.1017/S0143385700001735 - Peter Sarnak,
*Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series*, Comm. Pure Appl. Math.**34**(1981), no.Â 6, 719â739. MR**634284**, DOI 10.1002/cpa.3160340602 - Barbara Schapira,
*Equidistribution of the horocycles of a geometrically finite surface*, Int. Math. Res. Not.**40**(2005), 2447â2471. MR**2180113**, DOI 10.1155/IMRN.2005.2447 - Henrik Schlichtkrull,
*Hyperfunctions and harmonic analysis on symmetric spaces*, Progress in Mathematics, vol. 49, BirkhĂ€user Boston, Inc., Boston, MA, 1984. MR**757178**, DOI 10.1007/978-1-4612-5298-6 - Dennis Sullivan,
*The density at infinity of a discrete group of hyperbolic motions*, Inst. Hautes Ătudes Sci. Publ. Math.**50**(1979), 171â202. MR**556586**, DOI 10.1007/BF02684773 - Dennis Sullivan,
*Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups*, Acta Math.**153**(1984), no.Â 3-4, 259â277. MR**766265**, DOI 10.1007/BF02392379 - Shing Tung Yau,
*Harmonic functions on complete Riemannian manifolds*, Comm. Pure Appl. Math.**28**(1975), 201â228. MR**431040**, DOI 10.1002/cpa.3160280203

## Bibliographic Information

**Hee Oh**- Affiliation: Department of Mathematics, Brown University, Providence, Rhode Island 02912 and Korea Institute for Advanced Study, Seoul, Korea
- MR Author ID: 615083
- Email: heeoh@math.brown.edu
**Nimish A. Shah**- Affiliation: Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
- Email: shah@math.ohio-state.edu
- Received by editor(s): April 7, 2011
- Received by editor(s) in revised form: January 27, 2012, and May 31, 2012
- Published electronically: October 2, 2012
- Additional Notes: The first author was supported in part by NSF Grants #0629322 and #1068094.

The second author was supported in part by NSF Grant #1001654. - © Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc.
**26**(2013), 511-562 - MSC (2010): Primary 11N45, 37F35, 22E40; Secondary 37A17, 20F67
- DOI: https://doi.org/10.1090/S0894-0347-2012-00749-8
- MathSciNet review: 3011420