Logarithmic Gromov-Witten invariants
HTML articles powered by AMS MathViewer
- by Mark Gross and Bernd Siebert;
- J. Amer. Math. Soc. 26 (2013), 451-510
- DOI: https://doi.org/10.1090/S0894-0347-2012-00757-7
- Published electronically: November 20, 2012
- PDF | Request permission
Abstract:
The goal of this paper is to give a general theory of logarithmic Gromov-Witten invariants. This gives a vast generalization of the theory of relative Gromov-Witten invariants introduced by Li-Ruan, Ionel-Parker, and Jun Li and completes a program first proposed by the second named author in 2002. One considers target spaces $X$ carrying a log structure. Domains of stable log curves are log smooth curves. Algebraicity of the stack of such stable log maps is proven, subject only to the hypothesis that the log structure on $X$ is fine, saturated, and Zariski. A notion of basic stable log map is introduced; all stable log maps are pull-backs of basic stable log maps via base-change. With certain additional hypotheses, the stack of basic stable log maps is proven to be proper. Under these hypotheses and the additional hypothesis that $X$ is log smooth, one obtains a theory of log Gromov-Witten invariants.References
- D. Abramovich, Q. Chen: Stable logarithmic maps to Deligne-Faltings pairs II, preprint arXiv:1102.4531 [math.AG], 19pp.
- D. Abramovich, Q. Chen, W.D. Gillam, S. Marcus: The evaluation space of logarithmic stable maps, preprint arXiv:1012.5416 [math.AG], 19pp.
- D. Abramovich, S. Marcus, J. Wise: Comparison theorems for Gromov-Witten invariants of smooth pairs and of degenerations, preprint arXiv:1207.2085 [math.AG], 43pp.
- M. Artin, Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165–189. MR 399094, DOI 10.1007/BF01390174
- K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997), no. 3, 601–617. MR 1431140, DOI 10.1007/s002220050132
- K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88. MR 1437495, DOI 10.1007/s002220050136
- K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), no. 1, 1–60. MR 1412436, DOI 10.1215/S0012-7094-96-08501-4
- Q. Chen: Stable logarithmic maps to Deligne-Faltings pairs I, preprint arXiv:1008.3090 [math.AG], 48pp.
- P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR 262240, DOI 10.1007/BF02684599
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR 1492534, DOI 10.1090/pspum/062.2/1492534
- Andreas Gathmann, Absolute and relative Gromov-Witten invariants of very ample hypersurfaces, Duke Math. J. 115 (2002), no. 2, 171–203. MR 1944571, DOI 10.1215/S0012-7094-02-11521-X
- Mark Gross, The Strominger-Yau-Zaslow conjecture: from torus fibrations to degenerations, Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 149–192. MR 2483935, DOI 10.1090/pspum/080.1/2483935
- Alexander Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique. IV. Les schémas de Hilbert, Séminaire Bourbaki, Vol. 6, Soc. Math. France, Paris, 1995, pp. Exp. No. 221, 249–276 (French). MR 1611822
- Luc Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin-New York, 1971 (French). MR 491680, DOI 10.1007/BFb0059052
- Eleny-Nicoleta Ionel and Thomas H. Parker, Relative Gromov-Witten invariants, Ann. of Math. (2) 157 (2003), no. 1, 45–96. MR 1954264, DOI 10.4007/annals.2003.157.45
- Fumiharu Kato, Log smooth deformation and moduli of log smooth curves, Internat. J. Math. 11 (2000), no. 2, 215–232. MR 1754621, DOI 10.1142/S0129167X0000012X
- Kazuya Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191–224. MR 1463703
- Bumsig Kim, Logarithmic stable maps, New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008) Adv. Stud. Pure Math., vol. 59, Math. Soc. Japan, Tokyo, 2010, pp. 167–200. MR 2683209, DOI 10.2969/aspm/05910167
- Finn F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983), no. 2, 161–199. MR 702953, DOI 10.7146/math.scand.a-12001
- Donald Knutson, Algebraic spaces, Lecture Notes in Mathematics, Vol. 203, Springer-Verlag, Berlin-New York, 1971. MR 302647, DOI 10.1007/BFb0059750
- Andrew Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999), no. 3, 495–536. MR 1719823, DOI 10.1007/s002220050351
- Gérard Laumon and Laurent Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39, Springer-Verlag, Berlin, 2000 (French). MR 1771927, DOI 10.1007/978-3-540-24899-6
- An-Min Li and Yongbin Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math. 145 (2001), no. 1, 151–218. MR 1839289, DOI 10.1007/s002220100146
- Jun Li, Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57 (2001), no. 3, 509–578. MR 1882667
- Jun Li, A degeneration formula of GW-invariants, J. Differential Geom. 60 (2002), no. 2, 199–293. MR 1938113
- Jun Li and Gang Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), no. 1, 119–174. MR 1467172, DOI 10.1090/S0894-0347-98-00250-1
- Takeo Nishinou and Bernd Siebert, Toric degenerations of toric varieties and tropical curves, Duke Math. J. 135 (2006), no. 1, 1–51. MR 2259922, DOI 10.1215/S0012-7094-06-13511-1
- Nitin Nitsure, Construction of Hilbert and Quot schemes, Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, RI, 2005, pp. 105–137. MR 2223407
- A. Ogus: Lectures on logarithmic algebraic geometry. TeXed notes (2006).
- Martin Christian Olsson, Log algebraic stacks and moduli of log schemes, ProQuest LLC, Ann Arbor, MI, 2001. Thesis (Ph.D.)–University of California, Berkeley. MR 2702292
- Martin C. Olsson, Logarithmic geometry and algebraic stacks, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 5, 747–791 (English, with English and French summaries). MR 2032986, DOI 10.1016/j.ansens.2002.11.001
- Martin C. Olsson, The logarithmic cotangent complex, Math. Ann. 333 (2005), no. 4, 859–931. MR 2195148, DOI 10.1007/s00208-005-0707-6
- Martin C. Olsson, Deformation theory of representable morphisms of algebraic stacks, Math. Z. 253 (2006), no. 1, 25–62. MR 2206635, DOI 10.1007/s00209-005-0875-9
- Brett Parker, Exploded manifolds, Adv. Math. 229 (2012), no. 6, 3256–3319. MR 2900440, DOI 10.1016/j.aim.2012.02.005
- Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1); Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. MR 354651
- Bernd Siebert, Virtual fundamental classes, global normal cones and Fulton’s canonical classes, Frobenius manifolds, Aspects Math., E36, Friedr. Vieweg, Wiesbaden, 2004, pp. 341–358. MR 2115776
- B. Siebert: Gromov-Witten invariants in relative and singular cases, Lecture given at the workshop “Algebraic aspects of mirror symmetry”, Univ. Kaiserslautern, Germany, June 2001.
- B. Siebert: Obstruction theories revisited, manuscript 2002.
Bibliographic Information
- Mark Gross
- Affiliation: Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112
- MR Author ID: 308804
- Email: mgross@math.ucsd.edu
- Bernd Siebert
- Affiliation: FB Mathematik, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
- Email: bernd.siebert@math.uni-hamburg.de
- Received by editor(s): March 16, 2011
- Received by editor(s) in revised form: August 26, 2011, and July 30, 2012
- Published electronically: November 20, 2012
- Additional Notes: This work was partially supported by NSF grants 0505325 and 0805328.
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 26 (2013), 451-510
- MSC (2010): Primary 14D20, 14N35
- DOI: https://doi.org/10.1090/S0894-0347-2012-00757-7
- MathSciNet review: 3011419