Bounds for Rankin–Selberg integrals and quantum unique ergodicity for powerful levels
HTML articles powered by AMS MathViewer
- by Paul D. Nelson, Ameya Pitale and Abhishek Saha;
- J. Amer. Math. Soc. 27 (2014), 147-191
- DOI: https://doi.org/10.1090/S0894-0347-2013-00779-1
- Published electronically: August 6, 2013
- PDF | Request permission
Abstract:
Let $f$ be a classical holomorphic newform of level $q$ and even weight $k$. We show that the pushforward to the full level modular curve of the mass of $f$ equidistributes as $q k \rightarrow \infty$. This generalizes known results in the case that $q$ is squarefree. We obtain a power savings in the rate of equidistribution as $q$ becomes sufficiently “powerful” (far away from being squarefree) and in particular in the “depth aspect” as $q$ traverses the powers of a fixed prime.
We compare the difficulty of such equidistribution problems to that of corresponding subconvexity problems by deriving explicit extensions of Watson’s formula to certain triple product integrals involving forms of nonsquarefree level. By a theorem of Ichino and a lemma of Michel–Venkatesh, this amounts to a detailed study of Rankin–Selberg integrals $\int |f|^2 E$ attached to newforms $f$ of arbitrary level and Eisenstein series $E$ of full level.
We find that the local factors of such integrals participate in many amusing analogies with global $L$-functions. For instance, we observe that the mass equidistribution conjecture with a power savings in the depth aspect is equivalent to knowing either a global subconvexity bound or what we call a “local subconvexity bound”; a consequence of our local calculations is what we call a “local Lindelöf hypothesis”.
References
- A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma _{0}(m)$, Math. Ann. 185 (1970), 134–160. MR 268123, DOI 10.1007/BF01359701
- François Brunault. On the ramification of modular parametrizations at the cusps. Preprint.
- Daniel Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, vol. 55, Cambridge University Press, Cambridge, 1997. MR 1431508, DOI 10.1017/CBO9780511609572
- Colin J. Bushnell, Guy M. Henniart, and Philip C. Kutzko, Local Rankin-Selberg convolutions for $\textrm {GL}_n$: explicit conductor formula, J. Amer. Math. Soc. 11 (1998), no. 3, 703–730. MR 1606410, DOI 10.1090/S0894-0347-98-00270-7
- Pierre Deligne. Formes modulaires et représentations $\ell$-adiques. Séminaire Bourbaki, Vol. 1968/1969, Exp. 347-363, 179:139–172, 1971.
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258
- W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math. 92 (1988), no. 1, 73–90. MR 931205, DOI 10.1007/BF01393993
- Manfred Einsiedler, Elon Lindenstrauss, Philippe Michel, and Akshay Venkatesh, Distribution of periodic torus orbits and Duke’s theorem for cubic fields, Ann. of Math. (2) 173 (2011), no. 2, 815–885. MR 2776363, DOI 10.4007/annals.2011.173.2.5
- Paul B. Garrett, Decomposition of Eisenstein series: Rankin triple products, Ann. of Math. (2) 125 (1987), no. 2, 209–235. MR 881269, DOI 10.2307/1971310
- Stephen S. Gelbart, Automorphic forms on adèle groups, Annals of Mathematics Studies, No. 83, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1975. MR 379375
- Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of $\textrm {GL}(2)$ and $\textrm {GL}(3)$, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471–542. MR 533066
- Stephen Gelbart and Hervé Jacquet, Forms of $\textrm {GL}(2)$ from the analytic point of view, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 213–251. MR 546600
- Dorian Goldfeld, Joseph Hundley, and Min Lee. Fourier expansions of GL(2) newforms at various cusps. arXiv e-prints, 2010. http://arxiv.org/abs/1009.0028.
- George Greaves, Sieves in number theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 43, Springer-Verlag, Berlin, 2001. MR 1836967, DOI 10.1007/978-3-662-04658-6
- Benedict H. Gross and Stephen S. Kudla, Heights and the central critical values of triple product $L$-functions, Compositio Math. 81 (1992), no. 2, 143–209. MR 1145805
- Michael Harris and Stephen S. Kudla, The central critical value of a triple product $L$-function, Ann. of Math. (2) 133 (1991), no. 3, 605–672. MR 1109355, DOI 10.2307/2944321
- Roman Holowinsky, Sieving for mass equidistribution, Ann. of Math. (2) 172 (2010), no. 2, 1499–1516. MR 2680498, DOI 10.4007/annals.2010.172.1499
- Roman Holowinsky and Kannan Soundararajan, Mass equidistribution for Hecke eigenforms, Ann. of Math. (2) 172 (2010), no. 2, 1517–1528. MR 2680499, DOI 10.4007/annals.2010.172.1517
- Atsushi Ichino, Trilinear forms and the central values of triple product $L$-functions, Duke Math. J. 145 (2008), no. 2, 281–307. MR 2449948, DOI 10.1215/00127094-2008-052
- Atsushi Ichino and Tamutsu Ikeda, On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture, Geom. Funct. Anal. 19 (2010), no. 5, 1378–1425. MR 2585578, DOI 10.1007/s00039-009-0040-4
- Henryk Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17, American Mathematical Society, Providence, RI, 1997. MR 1474964, DOI 10.1090/gsm/017
- Henryk Iwaniec, Spectral methods of automorphic forms, 2nd ed., Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. MR 1942691, DOI 10.1090/gsm/053
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of $L$-functions, Geom. Funct. Anal. Special Volume (2000), 705–741. GAFA 2000 (Tel Aviv, 1999). MR 1826269, DOI 10.1007/978-3-0346-0425-3_{6}
- Hervé Jacquet, Automorphic forms on $\textrm {GL}(2)$. Part II, Lecture Notes in Mathematics, Vol. 278, Springer-Verlag, Berlin-New York, 1972. MR 562503
- H. Jacquet and R. P. Langlands, Automorphic forms on $\textrm {GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 401654
- Henry H. Kim, Functoriality for the exterior square of $\textrm {GL}_4$ and the symmetric fourth of $\textrm {GL}_2$, J. Amer. Math. Soc. 16 (2003), no. 1, 139–183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. MR 1937203, DOI 10.1090/S0894-0347-02-00410-1
- E. Kowalski, P. Michel, and J. VanderKam, Rankin-Selberg $L$-functions in the level aspect, Duke Math. J. 114 (2002), no. 1, 123–191. MR 1915038, DOI 10.1215/S0012-7094-02-11416-1
- Uwe Krause, Abschätzungen für die Funktion $\Psi _K(x,y)$ in algebraischen Zahlkörpern, Manuscripta Math. 69 (1990), no. 3, 319–331 (German). MR 1078363, DOI 10.1007/BF02567930
- Wenzhi Luo and Peter Sarnak, Mass equidistribution for Hecke eigenforms, Comm. Pure Appl. Math. 56 (2003), no. 7, 874–891. Dedicated to the memory of Jürgen K. Moser. MR 1990480, DOI 10.1002/cpa.10078
- Philippe Michel and Akshay Venkatesh, The subconvexity problem for $\textrm {GL}_2$, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 171–271. MR 2653249, DOI 10.1007/s10240-010-0025-8
- Paul Nelson, Mass distribution of automorphic forms on quaternion algebras. In preparation.
- Paul D. Nelson, Equidistribution of cusp forms in the level aspect, Duke Math. J. 160 (2011), no. 3, 467–501. MR 2852367, DOI 10.1215/00127094-144287
- Paul D. Nelson, Mass equidistribution of Hilbert modular eigenforms, Ramanujan J. 27 (2012), no. 2, 235–284. MR 2886501, DOI 10.1007/s11139-011-9319-9
- I. Piatetski-Shapiro and Stephen Rallis, Rankin triple $L$ functions, Compositio Math. 64 (1987), no. 1, 31–115. MR 911357
- Dipendra Prasad and Dinakar Ramakrishnan, On the global root numbers of $\textrm {GL}(n)\times \textrm {GL}(m)$, Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996) Proc. Sympos. Pure Math., vol. 66, Amer. Math. Soc., Providence, RI, 1999, pp. 311–330. MR 1703765, DOI 10.1090/pspum/066.2/1703765
- Zeév Rudnick and Peter Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys. 161 (1994), no. 1, 195–213. MR 1266075
- Peter Sarnak, Arithmetic quantum chaos, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 183–236. MR 1321639
- Peter Sarnak, Recent Progress on QUE, http://www.math.princeton.edu/sarnak/SarnakQUE.pdf, 2009.
- Ralf Schmidt, Some remarks on local newforms for $\rm GL(2)$, J. Ramanujan Math. Soc. 17 (2002), no. 2, 115–147. MR 1913897
- J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, No. 7, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French. MR 344216
- Hideo Shimizu, Some examples of new forms, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 1, 97–113. MR 447121
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, NJ, 1971. Publications of the Mathematical Society of Japan, No. 11. MR 314766
- Kannan Soundararajan, Weak subconvexity for central values of $L$-functions, Ann. of Math. (2) 172 (2010), no. 2, 1469–1498. MR 2680497, DOI 10.4007/annals.2010.172.1469
- K. Soundararajan and Matthew P. Young, The prime geodesic theorem, J. Reine Angew. Math. 676 (2013), 105–120. MR 3028757, DOI 10.1515/crelle.2012.002
- Thomas Crawford Watson, Rankin triple products and quantum chaos, ProQuest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.)–Princeton University. MR 2703041
Bibliographic Information
- Paul D. Nelson
- Affiliation: École Polytechnique Fédérale de Lausanne, Mathgeom-TAN station 8, CH-1015 Lausanne, Switzerland
- Email: paul.nelson@epfl.ch, nelson.paul.david@gmail.com
- Ameya Pitale
- Affiliation: Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019
- MR Author ID: 778555
- Email: apitale@math.ou.edu
- Abhishek Saha
- Affiliation: Department of Mathematics, University of Bristol, Bristol BS81TW, United Kingdom
- Email: abhishek.saha@gmail.com
- Received by editor(s): May 30, 2012
- Received by editor(s) in revised form: January 8, 2013, April 4, 2013, and June 9, 2013
- Published electronically: August 6, 2013
- Additional Notes: The first author was supported by NSF grant OISE-1064866 and partially supported by grant SNF-137488
The second author was supported by NSF grant DMS 1100541 - © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 27 (2014), 147-191
- MSC (2010): Primary 11F11; Secondary 11F70, 22E50, 58J51
- DOI: https://doi.org/10.1090/S0894-0347-2013-00779-1
- MathSciNet review: 3110797