The Centro-Affine Hadwiger Theorem
HTML articles powered by AMS MathViewer
- by Christoph Haberl and Lukas Parapatits;
- J. Amer. Math. Soc. 27 (2014), 685-705
- DOI: https://doi.org/10.1090/S0894-0347-2014-00781-5
- Published electronically: January 16, 2014
- PDF | Request permission
Abstract:
All upper semicontinuous and $\mathrm {SL}(n)$ invariant valuations on convex bodies containing the origin in their interiors are completely classified. Each such valuation is shown to be a linear combination of the Euler characteristic, the volume, the volume of the polar body, and the recently discovered Orlicz surface areas.References
- Judit Abardia and Andreas Bernig, Projection bodies in complex vector spaces, Adv. Math. 227 (2011), no. 2, 830–846. MR 2793024, DOI 10.1016/j.aim.2011.02.013
- S. Alesker, Continuous rotation invariant valuations on convex sets, Ann. of Math. (2) 149 (1999), no. 3, 977–1005. MR 1709308, DOI 10.2307/121078
- S. Alesker, Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture, Geom. Funct. Anal. 11 (2001), no. 2, 244–272. MR 1837364, DOI 10.1007/PL00001675
- Semyon Alesker, Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations, J. Differential Geom. 63 (2003), no. 1, 63–95. MR 2015260
- Semyon Alesker, Theory of valuations on manifolds: a survey, Geom. Funct. Anal. 17 (2007), no. 4, 1321–1341. MR 2373020, DOI 10.1007/s00039-007-0631-x
- Semyon Alesker, Valuations on manifolds and integral geometry, Geom. Funct. Anal. 20 (2010), no. 5, 1073–1143. MR 2746948, DOI 10.1007/s00039-010-0088-1
- Semyon Alesker, Andreas Bernig, and Franz E. Schuster, Harmonic analysis of translation invariant valuations, Geom. Funct. Anal. 21 (2011), no. 4, 751–773. MR 2827009, DOI 10.1007/s00039-011-0125-8
- Ben Andrews, Contraction of convex hypersurfaces by their affine normal, J. Differential Geom. 43 (1996), no. 2, 207–230. MR 1424425
- Andreas Bernig, Valuations with Crofton formula and Finsler geometry, Adv. Math. 210 (2007), no. 2, 733–753. MR 2303237, DOI 10.1016/j.aim.2006.07.009
- Andreas Bernig, A Hadwiger-type theorem for the special unitary group, Geom. Funct. Anal. 19 (2009), no. 2, 356–372. MR 2545241, DOI 10.1007/s00039-009-0008-4
- Andreas Bernig and Ludwig Bröcker, Valuations on manifolds and Rumin cohomology, J. Differential Geom. 75 (2007), no. 3, 433–457. MR 2301452
- Andreas Bernig and Joseph H. G. Fu, Hermitian integral geometry, Ann. of Math. (2) 173 (2011), no. 2, 907–945. MR 2776365, DOI 10.4007/annals.2011.173.2.7
- Károly J. Böröczky, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc. 26 (2013), no. 3, 831–852. MR 3037788, DOI 10.1090/S0894-0347-2012-00741-3
- S. Campi and P. Gronchi, The $L^p$-Busemann-Petty centroid inequality, Adv. Math. 167 (2002), no. 1, 128–141. MR 1901248, DOI 10.1006/aima.2001.2036
- Kai-Seng Chou and Xu-Jia Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math. 205 (2006), no. 1, 33–83. MR 2254308, DOI 10.1016/j.aim.2005.07.004
- Andrea Cianchi, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Affine Moser-Trudinger and Morrey-Sobolev inequalities, Calc. Var. Partial Differential Equations 36 (2009), no. 3, 419–436. MR 2551138, DOI 10.1007/s00526-009-0235-4
- Joseph H. G. Fu, Structure of the unitary valuation algebra, J. Differential Geom. 72 (2006), no. 3, 509–533. MR 2219942
- Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR 2251886, DOI 10.1017/CBO9781107341029
- R. J. Gardner and A. A. Giannopoulos, $p$-cross-section bodies, Indiana Univ. Math. J. 48 (1999), no. 2, 593–613. MR 1722809, DOI 10.1512/iumj.1999.48.1689
- R. J. Gardner and Gaoyong Zhang, Affine inequalities and radial mean bodies, Amer. J. Math. 120 (1998), no. 3, 505–528. MR 1623396
- Peter M. Gruber, Convex and discrete geometry, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007. MR 2335496
- Peter M. Gruber, Aspects of approximation of convex bodies, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 319–345. MR 1242984
- Christoph Haberl, Minkowski valuations intertwining with the special linear group, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 5, 1565–1597. MR 2966660, DOI 10.4171/JEMS/341
- Christoph Haberl, Star body valued valuations, Indiana Univ. Math. J. 58 (2009), no. 5, 2253–2276. MR 2583498, DOI 10.1512/iumj.2009.58.3685
- Christoph Haberl, Blaschke valuations, Amer. J. Math. 133 (2011), no. 3, 717–751. MR 2808330, DOI 10.1353/ajm.2011.0019
- Christoph Haberl and Monika Ludwig, A characterization of $L_p$ intersection bodies, Int. Math. Res. Not. , posted on (2006), Art. ID 10548, 29. MR 2250020, DOI 10.1155/IMRN/2006/10548
- Christoph Haberl, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The even Orlicz Minkowski problem, Adv. Math. 224 (2010), no. 6, 2485–2510. MR 2652213, DOI 10.1016/j.aim.2010.02.006
- Christoph Haberl and Franz E. Schuster, Asymmetric affine $L_p$ Sobolev inequalities, J. Funct. Anal. 257 (2009), no. 3, 641–658. MR 2530600, DOI 10.1016/j.jfa.2009.04.009
- Christoph Haberl and Franz E. Schuster, General $L_p$ affine isoperimetric inequalities, J. Differential Geom. 83 (2009), no. 1, 1–26. MR 2545028
- Christoph Haberl, Franz E. Schuster, and Jie Xiao, An asymmetric affine Pólya-Szegö principle, Math. Ann. 352 (2012), no. 3, 517–542. MR 2885586, DOI 10.1007/s00208-011-0640-9
- H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). MR 102775
- Daniel A. Klain, Star valuations and dual mixed volumes, Adv. Math. 121 (1996), no. 1, 80–101. MR 1399604, DOI 10.1006/aima.1996.0048
- Daniel A. Klain, Invariant valuations on star-shaped sets, Adv. Math. 125 (1997), no. 1, 95–113. MR 1427802, DOI 10.1006/aima.1997.1601
- Daniel A. Klain and Gian-Carlo Rota, Introduction to geometric probability, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1997. MR 1608265
- Monika Ludwig, Valuations on Sobolev spaces, Amer. J. Math. 134 (2012), no. 3, 827–842. MR 2931225, DOI 10.1353/ajm.2012.0019
- Monika Ludwig, Moment vectors of polytopes, Rend. Circ. Mat. Palermo (2) Suppl. 70 (2002), 123–138. IV International Conference in “Stochastic Geometry, Convex Bodies, Empirical Measures $\&$ Applications to Engineering Science”, Vol. II (Tropea, 2001). MR 1962589
- Monika Ludwig, Projection bodies and valuations, Adv. Math. 172 (2002), no. 2, 158–168. MR 1942402, DOI 10.1016/S0001-8708(02)00021-X
- Monika Ludwig, Valuations of polytopes containing the origin in their interiors, Adv. Math. 170 (2002), no. 2, 239–256. MR 1932331, DOI 10.1006/aima.2002.2077
- Monika Ludwig, Ellipsoids and matrix-valued valuations, Duke Math. J. 119 (2003), no. 1, 159–188. MR 1991649, DOI 10.1215/S0012-7094-03-11915-8
- Monika Ludwig, Minkowski valuations, Trans. Amer. Math. Soc. 357 (2005), no. 10, 4191–4213. MR 2159706, DOI 10.1090/S0002-9947-04-03666-9
- Monika Ludwig, Intersection bodies and valuations, Amer. J. Math. 128 (2006), no. 6, 1409–1428. MR 2275906
- Monika Ludwig, General affine surface areas, Adv. Math. 224 (2010), no. 6, 2346–2360. MR 2652209, DOI 10.1016/j.aim.2010.02.004
- Monika Ludwig, Minkowski areas and valuations, J. Differential Geom. 86 (2010), no. 1, 133–161. MR 2772547
- Monika Ludwig, Fisher information and matrix-valued valuations, Adv. Math. 226 (2011), no. 3, 2700–2711. MR 2739790, DOI 10.1016/j.aim.2010.08.021
- Monika Ludwig and Matthias Reitzner, A characterization of affine surface area, Adv. Math. 147 (1999), no. 1, 138–172. MR 1725817, DOI 10.1006/aima.1999.1832
- Monika Ludwig and Matthias Reitzner, Elementary moves on triangulations, Discrete Comput. Geom. 35 (2006), no. 4, 527–536. MR 2225672, DOI 10.1007/s00454-006-1240-4
- Monika Ludwig and Matthias Reitzner, A classification of $\textrm {SL}(n)$ invariant valuations, Ann. of Math. (2) 172 (2010), no. 2, 1219–1267. MR 2680490, DOI 10.4007/annals.2010.172.1223
- Erwin Lutwak, Extended affine surface area, Adv. Math. 85 (1991), no. 1, 39–68. MR 1087796, DOI 10.1016/0001-8708(91)90049-D
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131–150. MR 1231704
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244–294. MR 1378681, DOI 10.1006/aima.1996.0022
- Erwin Lutwak, Songjun Lv, Deane Yang, and Gaoyong Zhang, Extensions of Fisher information and Stam’s inequality, IEEE Trans. Inform. Theory 58 (2012), no. 3, 1319–1327. MR 2932811, DOI 10.1109/TIT.2011.2177563
- Erwin Lutwak and Vladimir Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom. 41 (1995), no. 1, 227–246. MR 1316557
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, $L_p$ affine isoperimetric inequalities, J. Differential Geom. 56 (2000), no. 1, 111–132. MR 1863023
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, A new ellipsoid associated with convex bodies, Duke Math. J. 104 (2000), no. 3, 375–390. MR 1781476, DOI 10.1215/S0012-7094-00-10432-2
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Sharp affine $L_p$ Sobolev inequalities, J. Differential Geom. 62 (2002), no. 1, 17–38. MR 1987375
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Optimal Sobolev norms and the $L^p$ Minkowski problem, Int. Math. Res. Not. , posted on (2006), Art. ID 62987, 21. MR 2211138, DOI 10.1155/IMRN/2006/62987
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Orlicz centroid bodies, J. Differential Geom. 84 (2010), no. 2, 365–387. MR 2652465
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Orlicz projection bodies, Adv. Math. 223 (2010), no. 1, 220–242. MR 2563216, DOI 10.1016/j.aim.2009.08.002
- Erwin Lutwak and Gaoyong Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997), no. 1, 1–16. MR 1601426
- P. McMullen, Valuations and Euler-type relations on certain classes of convex polytopes, Proc. London Math. Soc. (3) 35 (1977), no. 1, 113–135. MR 448239, DOI 10.1112/plms/s3-35.1.113
- L. Parapatits, SL$(n)$-contravariant ${L}_p$-Minkowski valuations, Trans. Amer. Math. Soc., in press.
- Lukas Parapatits and Franz E. Schuster, The Steiner formula for Minkowski valuations, Adv. Math. 230 (2012), no. 3, 978–994. MR 2921168, DOI 10.1016/j.aim.2012.03.024
- D. Ryabogin and A. Zvavitch, The Fourier transform and Firey projections of convex bodies, Indiana Univ. Math. J. 53 (2004), no. 3, 667–682. MR 2086696, DOI 10.1512/iumj.2004.53.2399
- Guillermo Sapiro, Geometric partial differential equations and image analysis, Cambridge University Press, Cambridge, 2006. Reprint of the 2001 original [MR1813971]. MR 2219476
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521, DOI 10.1017/CBO9780511526282
- Franz E. Schuster, Valuations and Busemann-Petty type problems, Adv. Math. 219 (2008), no. 1, 344–368. MR 2435426, DOI 10.1016/j.aim.2008.05.001
- Franz E. Schuster, Crofton measures and Minkowski valuations, Duke Math. J. 154 (2010), no. 1, 1–30. MR 2668553, DOI 10.1215/00127094-2010-033
- Franz E. Schuster and Thomas Wannerer, $\textrm {GL}(n)$ contravariant Minkowski valuations, Trans. Amer. Math. Soc. 364 (2012), no. 2, 815–826. MR 2846354, DOI 10.1090/S0002-9947-2011-05364-X
- Carsten Schütt and Elisabeth Werner, Surface bodies and $p$-affine surface area, Adv. Math. 187 (2004), no. 1, 98–145. MR 2074173, DOI 10.1016/j.aim.2003.07.018
- Alina Stancu, The discrete planar $L_0$-Minkowski problem, Adv. Math. 167 (2002), no. 1, 160–174. MR 1901250, DOI 10.1006/aima.2001.2040
- Alina Stancu, On the number of solutions to the discrete two-dimensional $L_0$-Minkowski problem, Adv. Math. 180 (2003), no. 1, 290–323. MR 2019226, DOI 10.1016/S0001-8708(03)00005-7
- Neil S. Trudinger and Xu-Jia Wang, The affine Plateau problem, J. Amer. Math. Soc. 18 (2005), no. 2, 253–289. MR 2137978, DOI 10.1090/S0894-0347-05-00475-3
- Elisabeth Werner, On $L_p$-affine surface areas, Indiana Univ. Math. J. 56 (2007), no. 5, 2305–2323. MR 2360611, DOI 10.1512/iumj.2007.56.3099
- Elisabeth Werner and Deping Ye, New $L_p$ affine isoperimetric inequalities, Adv. Math. 218 (2008), no. 3, 762–780. MR 2414321, DOI 10.1016/j.aim.2008.02.002
- Elisabeth Werner and Deping Ye, Inequalities for mixed $p$-affine surface area, Math. Ann. 347 (2010), no. 3, 703–737. MR 2640049, DOI 10.1007/s00208-009-0453-2
- V. Yaskin and M. Yaskina, Centroid bodies and comparison of volumes, Indiana Univ. Math. J. 55 (2006), no. 3, 1175–1194. MR 2244603, DOI 10.1512/iumj.2006.55.2761
Bibliographic Information
- Christoph Haberl
- Affiliation: Vienna University of Technology, Institute of Discrete Mathematics and Geometry, Wiedner Hauptstraße 8–10/104, 1040 Wien, Austria
- Email: christoph.haberl@gmail.com
- Lukas Parapatits
- Affiliation: Vienna University of Technology, Institute of Discrete Mathematics and Geometry, Wiedner Hauptstraße 8–10/104, 1040 Wien, Austria
- MR Author ID: 979076
- Email: lukas.parapatits@tuwien.ac.at
- Received by editor(s): February 23, 2012
- Received by editor(s) in revised form: May 21, 2013
- Published electronically: January 16, 2014
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 27 (2014), 685-705
- MSC (2010): Primary 52A20, 52B45
- DOI: https://doi.org/10.1090/S0894-0347-2014-00781-5
- MathSciNet review: 3194492