The metamathematics of Stable Ramsey’s Theorem for Pairs
HTML articles powered by AMS MathViewer
- by C. T. Chong, Theodore A. Slaman and Yue Yang;
- J. Amer. Math. Soc. 27 (2014), 863-892
- DOI: https://doi.org/10.1090/S0894-0347-2014-00789-X
- Published electronically: March 25, 2014
- PDF | Request permission
Abstract:
We show that, over the base theory $\textit {RCA}_0$, Stable Ramsey’s Theorem for Pairs implies neither Ramsey’s Theorem for Pairs nor $\Sigma ^0_2$-induction.References
- Cholak Peter A., Jockusch Carl G., and Slaman Theodore A., On the strength of Ramsey’s theorem for pairs, J. Symbolic Logic 66 (2001), no. 1, 1–55.
- Chong C. T., Steffen Lempp, and Yue Yang, On the role of the collection principle for $\Sigma ^0_2$-formulas in second-order reverse mathematics, Proc. Amer. Math. Soc. 138 (2010), no. 3, 1093–1100.
- Rod Downey, Denis R. Hirschfeldt, Steffen Lempp, and Reed Solomon, A $\Delta ^0_2$ set with no infinite low subset in either it or its complement, J. Symbolic Logic 66 (2001), no. 3, 1371–1381. MR 1856748, DOI 10.2307/2695113
- Petr Hájek, Interpretability and fragments of arithmetic, Arithmetic, proof theory, and computational complexity (Prague, 1991) Oxford Logic Guides, vol. 23, Oxford Univ. Press, New York, 1993, pp. 185–196. MR 1236462
- Jeffry Lynn Hirst, COMBINATORICS IN SUBSYSTEMS OF SECOND ORDER ARITHMETIC, ProQuest LLC, Ann Arbor, MI, 1987. Thesis (Ph.D.)–The Pennsylvania State University. MR 2635978
- Carl G. Jockusch Jr., Ramsey’s theorem and recursion theory, J. Symbolic Logic 37 (1972), 268–280. MR 376319, DOI 10.2307/2272972
- Carl G. Jockusch Jr. and Robert I. Soare, $\Pi ^{0}_{1}$ classes and degrees of theories, Trans. Amer. Math. Soc. 173 (1972), 33–56. MR 316227, DOI 10.1090/S0002-9947-1972-0316227-0
- Richard Kaye, Models of Peano arithmetic, Oxford Logic Guides, vol. 15, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1098499
- S. C. Kleene, Recursive predicates and quantifiers, Trans. Amer. Math. Soc. 53 (1943), 41–73. MR 7371, DOI 10.1090/S0002-9947-1943-0007371-8
- Jiayi Liu, ${\mathsf {RT}}^2_2$ does not imply ${\mathsf {WKL}}_0$, J. Symbolic Logic 77 (2012), no. 2, 609–620. MR 2963024, DOI 10.2178/jsl/1333566640
- Kenneth McAloon, Completeness theorems, incompleteness theorems and models of arithmetic, Trans. Amer. Math. Soc. 239 (1978), 253–277. MR 487048, DOI 10.1090/S0002-9947-1978-0487048-9
- J. B. Paris and L. A. S. Kirby, $\Sigma _{n}$-collection schemas in arithmetic, Logic Colloquium ’77 (Proc. Conf., Wrocław, 1977) Stud. Logic Found. Math., vol. 96, North-Holland, Amsterdam-New York, 1978, pp. 199–209. MR 519815
- Hartley Rogers Jr., Theory of recursive functions and effective computability, 2nd ed., MIT Press, Cambridge, MA, 1987. MR 886890
- Gerald E. Sacks, Higher recursion theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1990. MR 1080970, DOI 10.1007/BFb0086109
- David Seetapun and Slaman Theodore A., On the strength of Ramsey’s theorem, Notre Dame J. Formal Logic 36 (1995), no. 4, 570–582.
- Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, NY, 2009. MR 2517689, DOI 10.1017/CBO9780511581007
- Theodore A. Slaman, $\Sigma _n$-bounding and $\Delta _n$-induction, Proc. Amer. Math. Soc. 132 (2004), no. 8, 2449–2456. MR 2052424, DOI 10.1090/S0002-9939-04-07294-6
- E. Specker, Ramsey’s theorem does not hold in recursive set theory, Logic Colloquium ’69 (Proc. Summer School and Colloq., Manchester, 1969) Stud. Logic Found. Math., Vol. 61, North-Holland, Amsterdam-London, 1971, pp. 439–442. MR 278941
Bibliographic Information
- C. T. Chong
- Affiliation: Department of Mathematics, National University of Singapore, Singapore 119076
- MR Author ID: 48725
- Email: chongct@math.nus.edu.sg
- Theodore A. Slaman
- Affiliation: Department of Mathematics, University of California, Berkeley, Berkeley, California 94720-3840
- MR Author ID: 163530
- Email: slaman@math.berkeley.edu
- Yue Yang
- Affiliation: Department of Mathematics, National University of Singapore, Singapore 119076
- Email: matyangy@nus.edu.sg
- Received by editor(s): September 1, 2012
- Received by editor(s) in revised form: August 17, 2013
- Published electronically: March 25, 2014
- © Copyright 2014 American Mathematical Society
- Journal: J. Amer. Math. Soc. 27 (2014), 863-892
- MSC (2010): Primary 03B30, 03F35, 03D80; Secondary 05D10
- DOI: https://doi.org/10.1090/S0894-0347-2014-00789-X
- MathSciNet review: 3194495