Pin(2)-Equivariant Seiberg-Witten Floer homology and the Triangulation Conjecture
HTML articles powered by AMS MathViewer
- by Ciprian Manolescu
- J. Amer. Math. Soc. 29 (2016), 147-176
- DOI: https://doi.org/10.1090/jams829
- Published electronically: April 22, 2015
- PDF | Request permission
Abstract:
We define $\operatorname {Pin}(2)$-equivariant Seiberg-Witten Floer homology for rational homology $3$-spheres equipped with a spin structure. The analogue of Frøyshov’s correction term in this setting is an integer-valued invariant of homology cobordism whose mod $2$ reduction is the Rokhlin invariant. As an application, we show that there are no homology $3$-spheres $Y$ of the Rokhlin invariant one such that $Y \#Y$ bounds an acyclic smooth $4$-manifold. By previous work of Galewski-Stern and Matumoto, this implies the existence of non-triangulable high-dimensional manifolds.References
- Selman Akbulut and John D. McCarthy, Casson’s invariant for oriented homology $3$-spheres, Mathematical Notes, vol. 36, Princeton University Press, Princeton, NJ, 1990. An exposition. MR 1030042, DOI 10.1515/9781400860623
- M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291–310. MR 131880, DOI 10.1112/plms/s3-11.1.291
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. MR 397797, DOI 10.1017/S0305004100049410
- Stefan Bauer and Mikio Furuta, A stable cohomotopy refinement of Seiberg-Witten invariants. I, Invent. Math. 155 (2004), no. 1, 1–19. MR 2025298, DOI 10.1007/s00222-003-0288-5
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three, Ann. of Math. (2) 110 (1979), no. 1, 83–112. MR 541330, DOI 10.2307/1971245
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133, DOI 10.1090/cbms/038
- Octavian Cornea, Homotopical dynamics: suspension and duality, Ergodic Theory Dynam. Systems 20 (2000), no. 2, 379–391. MR 1756976, DOI 10.1017/S0143385700000183
- Tammo tom Dieck, Transformation groups, De Gruyter Studies in Mathematics, vol. 8, Walter de Gruyter & Co., Berlin, 1987. MR 889050, DOI 10.1515/9783110858372.312
- R. D. Edwards, Suspensions of homology spheres, available at arXiv:math/0610573.
- Robert D. Edwards, The topology of manifolds and cell-like maps, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) Acad. Sci. Fennica, Helsinki, 1980, pp. 111–127. MR 562601
- James Eells Jr. and Nicolaas H. Kuiper, An invariant for certain smooth manifolds, Ann. Mat. Pura Appl. (4) 60 (1962), 93–110. MR 156356, DOI 10.1007/BF02412768
- Ronald Fintushel and Ronald J. Stern, Pseudofree orbifolds, Ann. of Math. (2) 122 (1985), no. 2, 335–364. MR 808222, DOI 10.2307/1971306
- Ronald Fintushel and Ronald J. Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. (3) 61 (1990), no. 1, 109–137. MR 1051101, DOI 10.1112/plms/s3-61.1.109
- Andreas Floer, A refinement of the Conley index and an application to the stability of hyperbolic invariant sets, Ergodic Theory Dynam. Systems 7 (1987), no. 1, 93–103. MR 886372, DOI 10.1017/S0143385700003825
- Andreas Floer, An instanton-invariant for $3$-manifolds, Comm. Math. Phys. 118 (1988), no. 2, 215–240. MR 956166, DOI 10.1007/BF01218578
- Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no. 3, 357–453. MR 679066
- Kim A. Frøyshov, The Seiberg-Witten equations and four-manifolds with boundary, Math. Res. Lett. 3 (1996), no. 3, 373–390. MR 1397685, DOI 10.4310/MRL.1996.v3.n3.a7
- Kim A. Frøyshov, Equivariant aspects of Yang-Mills Floer theory, Topology 41 (2002), no. 3, 525–552. MR 1910040, DOI 10.1016/S0040-9383(01)00018-0
- Kim A. Frøyshov, Monopole Floer homology for rational homology 3-spheres, Duke Math. J. 155 (2010), no. 3, 519–576. MR 2738582, DOI 10.1215/00127094-2010-060
- Y. Fukumoto and M. Furuta, Homology 3-spheres bounding acyclic 4-manifolds, Math. Res. Lett. 7 (2000), no. 5-6, 757–766. MR 1809299, DOI 10.4310/MRL.2000.v7.n6.a8
- Yoshihiro Fukumoto, Mikio Furuta, and Masaaki Ue, $W$-invariants and Neumann-Siebenmann invariants for Seifert homology $3$-spheres, Topology Appl. 116 (2001), no. 3, 333–369. MR 1857670, DOI 10.1016/S0166-8641(00)00103-6
- Mikio Furuta, Homology cobordism group of homology $3$-spheres, Invent. Math. 100 (1990), no. 2, 339–355. MR 1047138, DOI 10.1007/BF01231190
- M. Furuta, Monopole equation and the $\frac {11}8$-conjecture, Math. Res. Lett. 8 (2001), no. 3, 279–291. MR 1839478, DOI 10.4310/MRL.2001.v8.n3.a5
- D. Galewski and R. Stern, A universal $5$-manifold with respect to simplicial triangulations, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977) Academic Press, New York-London, 1979, pp. 345–350. MR 537740
- David E. Galewski and Ronald J. Stern, Classification of simplicial triangulations of topological manifolds, Ann. of Math. (2) 111 (1980), no. 1, 1–34. MR 558395, DOI 10.2307/1971215
- Kazimierz Gęba, Degree for gradient equivariant maps and equivariant Conley index, Topological nonlinear analysis, II (Frascati, 1995) Progr. Nonlinear Differential Equations Appl., vol. 27, Birkhäuser Boston, Boston, MA, 1997, pp. 247–272. MR 1453891
- J. P. C. Greenlees and J. P. May, Generalized Tate cohomology, Mem. Amer. Math. Soc. 113 (1995), no. 543, viii+178. MR 1230773, DOI 10.1090/memo/0543
- T. Khandhawit, A new gauge slice for the relative Bauer-Furuta invariants, available at arXiv:1401.7590. to appear in Geom. Topol., DOI 10.2140/gt.2015.19.1631
- Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah. MR 0645390, DOI 10.1515/9781400881505
- P. B. Kronheimer and C. Manolescu, Periodic Floer pro-spectra from the Seiberg-Witten equations, available at arXiv:math/0203243v3.
- Peter Kronheimer and Tomasz Mrowka, Monopoles and three-manifolds, New Mathematical Monographs, vol. 10, Cambridge University Press, Cambridge, 2007. MR 2388043, DOI 10.1017/CBO9780511543111
- P. Kronheimer, T. Mrowka, P. Ozsváth, and Z. Szabó, Monopoles and lens space surgeries, Ann. of Math. (2) 165 (2007), no. 2, 457–546. MR 2299739, DOI 10.4007/annals.2007.165.457
- G. Lewis, J. P. May, and J. McClure, Ordinary $RO(G)$-graded cohomology, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 2, 208–212. MR 598689, DOI 10.1090/S0273-0979-1981-14886-2
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778
- Ciprian Manolescu, Seiberg-Witten-Floer stable homotopy type of three-manifolds with $b_1=0$, Geom. Topol. 7 (2003), 889–932. MR 2026550, DOI 10.2140/gt.2003.7.889
- Ciprian Manolescu, A gluing theorem for the relative Bauer-Furuta invariants, J. Differential Geom. 76 (2007), no. 1, 117–153. MR 2312050
- Ciprian Manolescu and Brendan Owens, A concordance invariant from the Floer homology of double branched covers, Int. Math. Res. Not. IMRN 20 (2007), Art. ID rnm077, 21. MR 2363303, DOI 10.1093/imrn/rnm077
- Takao Matumoto, Triangulation of manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 3–6. MR 520517
- Edwin E. Moise, Affine structures in $3$-manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2) 56 (1952), 96–114. MR 48805, DOI 10.2307/1969769
- Tomasz Mrowka, Peter Ozsváth, and Baozhen Yu, Seiberg-Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997), no. 4, 685–791. MR 1611061, DOI 10.4310/CAG.1997.v5.n4.a3
- Tomasz Mrowka, Daniel Ruberman, and Nikolai Saveliev, Seiberg-Witten equations, end-periodic Dirac operators, and a lift of Rohlin’s invariant, J. Differential Geom. 88 (2011), no. 2, 333–377. MR 2838269
- Walter D. Neumann, An invariant of plumbed homology spheres, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788, Springer, Berlin, 1980, pp. 125–144. MR 585657
- Peter Ozsváth and Zoltán Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2, 179–261. MR 1957829, DOI 10.1016/S0001-8708(02)00030-0
- Peter Ozsváth and Zoltán Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003), 185–224. MR 1988284, DOI 10.2140/gt.2003.7.185
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004), no. 3, 1159–1245. MR 2113020, DOI 10.4007/annals.2004.159.1159
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027–1158. MR 2113019, DOI 10.4007/annals.2004.159.1027
- Peter Ozsváth and Zoltán Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006), no. 2, 326–400. MR 2222356, DOI 10.1016/j.aim.2005.03.014
- Artur M. Pruszko, The Conley index for flows preserving generalized symmetries, Conley index theory (Warsaw, 1997) Banach Center Publ., vol. 47, Polish Acad. Sci. Inst. Math., Warsaw, 1999, pp. 193–217. MR 1692371
- V. A. Rohlin, New results in the theory of four-dimensional manifolds, Doklady Akad. Nauk SSSR (N.S.) 84 (1952), 221–224 (Russian). MR 0052101
- V. A. Rohlin, New results in the theory of four-dimensional manifolds, Doklady Akad. Nauk SSSR (N.S.) 84 (1952), 221–224 (Russian). MR 0052101
- Daniel Ruberman and Nikolai Saveliev, Rohlin’s invariant and gauge theory. II. Mapping tori, Geom. Topol. 8 (2004), 35–76. MR 2033479, DOI 10.2140/gt.2004.8.35
- Nikolai Saveliev, Floer homology and invariants of homology cobordism, Internat. J. Math. 9 (1998), no. 7, 885–919. MR 1651061, DOI 10.1142/S0129167X98000385
- Nikolai Saveliev, Floer homology of Brieskorn homology spheres, J. Differential Geom. 53 (1999), no. 1, 15–87. MR 1776091
- Nikolai Saveliev, Fukumoto-Furuta invariants of plumbed homology 3-spheres, Pacific J. Math. 205 (2002), no. 2, 465–490. MR 1922741, DOI 10.2140/pjm.2002.205.465
- L. Siebenmann, On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology $3$-spheres, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788, Springer, Berlin, 1980, pp. 172–222. MR 585660
- L. C. Siebenmann, Are nontriangulable manifolds triangulable?, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham, Chicago, Ill., 1970, pp. 77–84. MR 0271956
- E. H. Spanier, Function spaces and duality, Ann. of Math. (2) 70 (1959), 338–378. MR 107862, DOI 10.2307/1970107
- E. H. Spanier and J. H. C. Whitehead, Duality in homotopy theory, Mathematika 2 (1955), 56–80. MR 74823, DOI 10.1112/S002557930000070X
- Klaus Wirthmüller, Equivariant homology and duality, Manuscripta Math. 11 (1974), 373–390. MR 343260, DOI 10.1007/BF01170239
- Klaus Wirthmüller, Equivariant $S$-duality, Arch. Math. (Basel) 26 (1975), no. 4, 427–431. MR 375297, DOI 10.1007/BF01229762
Bibliographic Information
- Ciprian Manolescu
- Affiliation: Department of Mathematics, UCLA, 520 Portola Plaza, Los Angeles, California 90095
- MR Author ID: 677111
- Email: cm@math.ucla.edu
- Received by editor(s): April 10, 2013
- Received by editor(s) in revised form: February 6, 2014, September 17, 2014, and October 6, 2014
- Published electronically: April 22, 2015
- Additional Notes: The author was supported by NSF grant DMS-1104406.
- © Copyright 2015 American Mathematical Society
- Journal: J. Amer. Math. Soc. 29 (2016), 147-176
- MSC (2010): Primary 57R58; Secondary 57Q15, 57M27
- DOI: https://doi.org/10.1090/jams829
- MathSciNet review: 3402697