Topology of quadrature domains
HTML articles powered by AMS MathViewer
- by Seung-Yeop Lee and Nikolai G. Makarov;
- J. Amer. Math. Soc. 29 (2016), 333-369
- DOI: https://doi.org/10.1090/jams828
- Published electronically: May 11, 2015
- PDF | Request permission
Abstract:
We address the problem of topology of quadrature domains, namely we give upper bounds on the connectivity of the domain in terms of the number of nodes and their multiplicities in the quadrature identity.References
- Dov Aharonov and Harold S. Shapiro, A minimal-area problem in conformal mapping. (Abstract), Proceedings of the Symposium on Complex Analysis (Univ. Kent, Canterbury, 1973) London Math. Soc. Lecture Note Ser., No. 12, Cambridge Univ. Press, London-New York, 1974, pp. 1–5. MR 412400
- Dov Aharonov and Harold S. Shapiro, Domains on which analytic functions satisfy quadrature identities, J. Analyse Math. 30 (1976), 39–73. MR 447589, DOI 10.1007/BF02786704
- D. Aharonov and H. S. Shapiro, A minimal-area problem in conformal mapping - preliminary report: Part II, 70 pp. Research bulletin TRITA-MAT-1978-5, Royal Institute of Technology.
- Dov Aharonov, Harold S. Shapiro, and Alexander Yu. Solynin, A minimal area problem in conformal mapping, J. Anal. Math. 78 (1999), 157–176. MR 1714449, DOI 10.1007/BF02791132
- Dov Aharonov, Harold S. Shapiro, and Alexander Yu. Solynin, A minimal area problem in conformal mapping. II, J. Anal. Math. 83 (2001), 259–288. MR 1828494, DOI 10.1007/BF02790264
- D. A. Brannan, Coefficient regions for univalent polynomials of small degree, Mathematika 14 (1967), 165–169. MR 220919, DOI 10.1112/S0025579300003764
- Luis A. Caffarelli, Lavi Karp, and Henrik Shahgholian, Regularity of a free boundary with application to the Pompeiu problem, Ann. of Math. (2) 151 (2000), no. 1, 269–292. MR 1745013, DOI 10.2307/121117
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
- V. G. Čeredničenko, Inverse Logarithmic Potential Problem, Inverse and Ill-Posed Problems Series, VSP, Leiden, The Netherlands, 1996., DOI 10.1515/9783110900125
- V. F. Cowling and W. C. Royster, Domains of variability for univalent polynomials, Proc. Amer. Math. Soc. 19 (1968), 767–772. MR 227392, DOI 10.1090/S0002-9939-1968-0227392-2
- Darren Crowdy, Quadrature domains and fluid dynamics, Quadrature domains and their applications, Oper. Theory Adv. Appl., vol. 156, Birkhäuser, Basel, 2005, pp. 113–129. MR 2129738, DOI 10.1007/3-7643-7316-4_{5}
- Darren Crowdy and Jonathan Marshall, Constructing multiply connected quadrature domains, SIAM J. Appl. Math. 64 (2004), no. 4, 1334–1359. MR 2068673, DOI 10.1137/S0036139903438545
- Philip J. Davis, The Schwarz function and its applications, The Carus Mathematical Monographs, No. 17, Mathematical Association of America, Buffalo, NY, 1974. MR 407252, DOI 10.5948/9781614440178
- Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287–343. MR 816367, DOI 10.24033/asens.1491
- Peter L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
- Peter Elbau and Giovanni Felder, Density of eigenvalues of random normal matrices, Comm. Math. Phys. 259 (2005), no. 2, 433–450. MR 2172690, DOI 10.1007/s00220-005-1372-z
- Bernard Epstein, On the mean-value property of harmonic functions, Proc. Amer. Math. Soc. 13 (1962), 830. MR 140700, DOI 10.1090/S0002-9939-1962-0140700-0
- Bernard Epstein and M. M. Schiffer, On the mean-value property of harmonic functions, J. Analyse Math. 14 (1965), 109–111. MR 177124, DOI 10.1007/BF02806381
- A. N. Varchenko and P. I. Ètingof, Why the boundary of a round drop becomes a curve of order four, University Lecture Series, vol. 3, American Mathematical Society, Providence, RI, 1992. MR 1190012, DOI 10.1090/ulect/003
- L. A. Galin, Unsteady filtration with a free surface, C. R. (Doklady) Acad. Sci. URSS (N.S.) 47 (1945), 246–249. MR 14004
- Lukas Geyer, Sharp bounds for the valence of certain harmonic polynomials, Proc. Amer. Math. Soc. 136 (2008), no. 2, 549–555. MR 2358495, DOI 10.1090/S0002-9939-07-08946-0
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523, DOI 10.1002/9781118032527
- Björn Gustafsson and Alexander Vasil′ev, Conformal and potential analysis in Hele-Shaw cells, Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2006. MR 2245542
- Björn Gustafsson and Harold S. Shapiro, What is a quadrature domain?, Quadrature domains and their applications, Oper. Theory Adv. Appl., vol. 156, Birkhäuser, Basel, 2005, pp. 1–25. MR 2129734, DOI 10.1007/3-7643-7316-4_{1}
- Björn Gustafsson, Quadrature identities and the Schottky double, Acta Appl. Math. 1 (1983), no. 3, 209–240. MR 726725, DOI 10.1007/BF00046600
- Björn Gustafsson, Singular and special points on quadrature domains from an algebraic geometric point of view, J. Analyse Math. 51 (1988), 91–117. MR 963151, DOI 10.1007/BF02791120
- Björn Gustafsson, Applications of variational inequalities to a moving boundary problem for Hele-Shaw flows, SIAM J. Math. Anal. 16 (1985), no. 2, 279–300. MR 777468, DOI 10.1137/0516021
- Björn Gustafsson, On quadrature domains and an inverse problem in potential theory, J. Analyse Math. 55 (1990), 172–216. MR 1094715, DOI 10.1007/BF02789201
- Björn Gustafsson and Makoto Sakai, Properties of some balayage operators, with applications to quadrature domains and moving boundary problems, Nonlinear Anal. 22 (1994), no. 10, 1221–1245. MR 1279981, DOI 10.1016/0362-546X(94)90107-4
- Björn Gustafsson, Chiyu He, Peyman Milanfar, and Mihai Putinar, Reconstructing planar domains from their moments, Inverse Problems 16 (2000), no. 4, 1053–1070. MR 1776483, DOI 10.1088/0266-5611/16/4/312
- Håkan Hedenmalm and Nikolai Makarov, Coulomb gas ensembles and Laplacian growth, Proc. Lond. Math. Soc. (3) 106 (2013), no. 4, 859–907. MR 3056295, DOI 10.1112/plms/pds032
- Kurt Johansson, On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J. 91 (1998), no. 1, 151–204. MR 1487983, DOI 10.1215/S0012-7094-98-09108-6
- Lavi Karp and Henrik Shahgholian, Regularity of a free boundary problem, J. Geom. Anal. 9 (1999), no. 4, 653–669. MR 1757583, DOI 10.1007/BF02921977
- Dmitry Khavinson and Grzegorz Świa̧tek, On the number of zeros of certain harmonic polynomials, Proc. Amer. Math. Soc. 131 (2003), no. 2, 409–414. MR 1933331, DOI 10.1090/S0002-9939-02-06476-6
- Avraham Klein and Oded Agam, Topological transitions in evaporating thin films, J. Phys. A 45 (2012), no. 35, 355003, 14. MR 2969114, DOI 10.1088/1751-8113/45/35/355003
- I. K. Kostov, I. Krichever, M. Mineev-Weinstein, P. B. Wiegmann, and A. Zabrodin, The $\tau$-function for analytic curves, Random matrix models and their applications, Math. Sci. Res. Inst. Publ., vol. 40, Cambridge Univ. Press, Cambridge, 2001, pp. 285–299. MR 1842792
- S.-Y. Lee and N. Makarov, Sharpness of connectivity bounds for quadrature domains, available at arXiv:1411.3415.
- A. L. Levin, An example of a doubly connected domain which admits a quadrature identity, Proc. Amer. Math. Soc. 60 (1976), 163–168 (1977). MR 419777, DOI 10.1090/S0002-9939-1976-0419777-0
- C. Neumann, Über das logarithmische Potential einer gewissen Ovalfläche, Abh. der math.-phys. Klasse der Königl. Sächs. Gesellsch. der Wiss. zu Leibzig 59 (1907), 278–312.
- C. Neumann, Über das logarithmische Potential einer gewissen Ovalfläche, Zweite Mitteilung 60 (1908), 53–56. Dritte Mitteilung, 240–247.
- P. Ya. Polubarinova-Kochina, On a problem of the motion of the contour of a petroleum shell, Dokl. Akad. Nauk USSR 47 (1945), 254–257. (in Russian).
- P. J. Poloubarinova-Kochina, Concerning unsteady motions in the theory of filtration, Appl. Math. Mech. [Akad. Nauk SSSR. Prikl. Mat. Mech.] 9 (1945), 79–90 (Russian, with English summary). MR 13009
- Mihai Putinar, On a class of finitely determined planar domains, Math. Res. Lett. 1 (1994), no. 3, 389–398. MR 1302653, DOI 10.4310/MRL.1994.v1.n3.a10
- Mihai Putinar, Extremal solutions of the two-dimensional $L$-problem of moments, J. Funct. Anal. 136 (1996), no. 2, 331–364. MR 1380658, DOI 10.1006/jfan.1996.0033
- S. H. Rhie, $n$-point gravitational lenses with $5(n-1)$ images, available at arXiv:astro-ph/0305166.
- S. Richardson, Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel, J. Fluid Mech. 56 (1972), no. 2, 609–618., DOI 10.1017/S0022112072002551
- Henrik Shahgholian, On quadrature domains and the Schwarz potential, J. Math. Anal. Appl. 171 (1992), no. 1, 61–78. MR 1192493, DOI 10.1016/0022-247X(92)90376-O
- Edward B. Saff and Vilmos Totik, Logarithmic potentials with external fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316, Springer-Verlag, Berlin, 1997. Appendix B by Thomas Bloom. MR 1485778, DOI 10.1007/978-3-662-03329-6
- Makoto Sakai, On basic domains of extremal functions, K\B{o}dai Math. Sem. Rep. 24 (1972), 251–258. MR 320299
- Makoto Sakai, Analytic functions with finite Dirichlet integrals on Riemann surfaces, Acta Math. 142 (1979), no. 3-4, 199–220. MR 521461, DOI 10.1007/BF02395061
- Makoto Sakai, The sub-mean-value property of subharmonic functions and its application to the estimation of the Gaussian curvature of the span metric, Hiroshima Math. J. 9 (1979), no. 3, 555–593. MR 549663
- Makoto Sakai, Quadrature domains, Lecture Notes in Mathematics, vol. 934, Springer-Verlag, Berlin-New York, 1982. MR 663007, DOI 10.1007/BFb0095892
- Makoto Sakai, A moment problem on Jordan domains, Proc. Amer. Math. Soc. 70 (1978), no. 1, 35–38. MR 470216, DOI 10.1090/S0002-9939-1978-0470216-5
- Makoto Sakai, Applications of variational inequalities to the existence theorem on quadrature domains, Trans. Amer. Math. Soc. 276 (1983), no. 1, 267–279. MR 684507, DOI 10.1090/S0002-9947-1983-0684507-2
- Makoto Sakai, Null quadrature domains, J. Analyse Math. 40 (1981), 144–154 (1982). MR 659788, DOI 10.1007/BF02790159
- Makoto Sakai, Domains having null complex moments, Complex Variables Theory Appl. 7 (1987), no. 4, 313–319. MR 889117, DOI 10.1080/17476938708814206
- Makoto Sakai, Regularity of a boundary having a Schwarz function, Acta Math. 166 (1991), no. 3-4, 263–297. MR 1097025, DOI 10.1007/BF02398888
- Makoto Sakai, Small modifications of quadrature domains, Mem. Amer. Math. Soc. 206 (2010), no. 969, vi+269. MR 2667421, DOI 10.1090/S0065-9266-10-00596-X
- Harold S. Shapiro, The Schwarz function and its generalization to higher dimensions, University of Arkansas Lecture Notes in the Mathematical Sciences, vol. 9, John Wiley & Sons, Inc., New York, 1992. A Wiley-Interscience Publication. MR 1160990
- T. Sheil-Small, Complex polynomials, Cambridge Studies in Advanced Mathematics, vol. 75, Cambridge University Press, Cambridge, 2002. MR 1962935, DOI 10.1017/CBO9780511543074
- P. Wiegmann and A. Zabrodin, Large scale correlations in normal non-Hermitian matrix ensembles, J. Phys. A 36 (2003), no. 12, 3411–3424. Random matrix theory. MR 1986427, DOI 10.1088/0305-4470/36/12/332
- Paul B. Wiegmann, Aharonov-Bohm effect in the quantum Hall regime and Laplacian growth problems, Statistical field theories (Como, 2001) NATO Sci. Ser. II Math. Phys. Chem., vol. 73, Kluwer Acad. Publ., Dordrecht, 2002, pp. 337–349. MR 2011014
- George Wilson, Hilbert’s sixteenth problem, Topology 17 (1978), no. 1, 53–73. MR 498591, DOI 10.1016/0040-9383(78)90012-5
Bibliographic Information
- Seung-Yeop Lee
- Affiliation: Department of Mathematics, California Institute of Technology, Pasadena, California 91125
- MR Author ID: 791647
- Email: duxlee@caltech.edu
- Nikolai G. Makarov
- Affiliation: Department of Mathematics, California Institute of Technology, Pasadena, California 91125
- MR Author ID: 210350
- Email: makarov@caltech.edu
- Received by editor(s): July 15, 2013
- Received by editor(s) in revised form: November 13, 2014
- Published electronically: May 11, 2015
- Additional Notes: The first author was supported by Sherman Fairchild Senior Research Fellowship.
The second author was supported by NSF grant no. 1101735. - © Copyright 2015 American Mathematical Society
- Journal: J. Amer. Math. Soc. 29 (2016), 333-369
- MSC (2010): Primary 30C99, 30E05, 30E99, 30D05, 31A99; Secondary 76D27, 30C62
- DOI: https://doi.org/10.1090/jams828
- MathSciNet review: 3454377