Rank-finiteness for modular categories
HTML articles powered by AMS MathViewer
- by Paul Bruillard, Siu-Hung Ng, Eric C. Rowell and Zhenghan Wang
- J. Amer. Math. Soc. 29 (2016), 857-881
- DOI: https://doi.org/10.1090/jams/842
- Published electronically: July 21, 2015
- PDF | Request permission
Abstract:
We prove a rank-finiteness conjecture for modular categories: up to equivalence, there are only finitely many modular categories of any fixed rank. Our technical advance is a generalization of the Cauchy theorem in group theory to the context of spherical fusion categories. For a modular category $\mathcal {C}$ with $N= \textrm {ord}(T)$, the order of the modular $T$-matrix, the Cauchy theorem says that the set of primes dividing the global quantum dimension $D^2$ in the Dedekind domain $\mathbb {Z}[e^{\frac {2\pi i}{N}}]$ is identical to that of $N$.References
- Bojko Bakalov and Alexander Kirillov Jr., Lectures on tensor categories and modular functors, University Lecture Series, vol. 21, American Mathematical Society, Providence, RI, 2001. MR 1797619, DOI 10.1090/ulect/021
- Peter Bantay, The Frobenius-Schur indicator in conformal field theory, Phys. Lett. B 394 (1997), no. 1-2, 87–88. MR 1436801, DOI 10.1016/S0370-2693(96)01662-0
- P. Bantay, The kernel of the modular representation and the Galois action in RCFT, Comm. Math. Phys. 233 (2003), no. 3, 423–438. MR 1962117, DOI 10.1007/s00220-002-0760-x
- Jan de Boer and Jacob Goeree, Markov traces and $\textrm {II}_1$ factors in conformal field theory, Comm. Math. Phys. 139 (1991), no. 2, 267–304. MR 1120140, DOI 10.1007/BF02352496
- John R. Britnell, A formal identity involving commuting triples of permutations, J. Combin. Theory Ser. A 120 (2013), no. 4, 941–943. MR 3022621, DOI 10.1016/j.jcta.2013.01.009
- A. Bruguières, Catégories Prémodulaires, Modularisations et Invariants des Variétés de Dimension 3, Math. Ann. 316 (2000), 215–236., DOI 10.1007/s002080050011
- Sebastian Burciu and Sonia Natale, Fusion rules of equivariantizations of fusion categories, J. Math. Phys. 54 (2013), no. 1, 013511, 21. MR 3059899, DOI 10.1063/1.4774293
- F. J. Burnell, X. Chen, L. Fidowski, and A. Vishwanath, Exactly Soluble Models of a 3D Symmetry Protected Topological Phase of Bosons with Surface Topological Order, available at arXiv:1302.7072v1.
- J. M. Burns and B. Goldsmith, Maximal order abelian subgroups of symmetric groups, Bull. London Math. Soc. 21 (1989), no. 1, 70–72. MR 967793, DOI 10.1112/blms/21.1.70
- Henri Cohen, Advanced topics in computational number theory, Graduate Texts in Mathematics, vol. 193, Springer-Verlag, New York, 2000. MR 1728313, DOI 10.1007/978-1-4419-8489-0
- A. Coste and T. Gannon, Remarks on Galois symmetry in rational conformal field theories, Phys. Lett. B 323 (1994), no. 3-4, 316–321. MR 1266785, DOI 10.1016/0370-2693(94)91226-2
- C. Davidovich, T. Hagge, and Z. Wang, On Arithmetic Modular Categories, available at arXiv:1305.2229.
- P. Deligne, Catégories tensorielles, Mosc. Math. J. 2 (2002), no. 2, 227–248 (French, with English summary). Dedicated to Yuri I. Manin on the occasion of his 65th birthday. MR 1944506, DOI 10.17323/1609-4514-2002-2-2-227-248
- C. Dong, X. Lin, and S.-H. Ng, Congruence Property in Conformal Field Theory, available at arXiv:1201.6644v5.
- Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, On braided fusion categories. I, Selecta Math. (N.S.) 16 (2010), no. 1, 1–119. MR 2609644, DOI 10.1007/s00029-010-0017-z
- Pavel Etingof, On some properties of quantum doubles of finite groups, J. Algebra 394 (2013), 1–6. MR 3092709, DOI 10.1016/j.jalgebra.2013.07.004
- Pavel Etingof, On Vafa’s theorem for tensor categories, Math. Res. Lett. 9 (2002), no. 5-6, 651–657. MR 1906068, DOI 10.4310/MRL.2002.v9.n5.a8
- P. Etingof. Private communication, Feb. 2013.
- Pavel Etingof and Shlomo Gelaki, Descent and forms of tensor categories, Int. Math. Res. Not. IMRN 13 (2012), 3040–3063. MR 2946231, DOI 10.1093/imrn/rnr119
- Pavel Etingof and Shlomo Gelaki, Some properties of finite-dimensional semisimple Hopf algebras, Math. Res. Lett. 5 (1998), no. 1-2, 191–197. MR 1617921, DOI 10.4310/MRL.1998.v5.n2.a5
- Pavel Etingof, Shlomo Gelaki, and Viktor Ostrik, Classification of fusion categories of dimension $pq$, Int. Math. Res. Not. 57 (2004), 3041–3056. MR 2098028, DOI 10.1155/S1073792804131206
- Pavel Etingof, Dmitri Nikshych, and Victor Ostrik, Fusion categories and homotopy theory, Quantum Topol. 1 (2010), no. 3, 209–273. With an appendix by Ehud Meir. MR 2677836, DOI 10.4171/QT/6
- Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581–642. MR 2183279, DOI 10.4007/annals.2005.162.581
- David E. Evans and Yasuyuki Kawahigashi, Quantum symmetries on operator algebras, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. Oxford Science Publications. MR 1642584
- Jan-Hendrik Evertse, On sums of $S$-units and linear recurrences, Compositio Math. 53 (1984), no. 2, 225–244. MR 766298
- Jan-Hendrik Evertse, The number of solutions of decomposable form equations, Invent. Math. 122 (1995), no. 3, 559–601. MR 1359604, DOI 10.1007/BF01231456
- J. Fuchs, A. Ch. Ganchev, K. Szlachányi, and P. Vecsernyés, $S_4$ symmetry of $6j$ symbols and Frobenius-Schur indicators in rigid monoidal $C^*$ categories, J. Math. Phys. 40 (1999), no. 1, 408–426. MR 1657800, DOI 10.1063/1.532778
- Shlomo Gelaki and Dmitri Nikshych, Nilpotent fusion categories, Adv. Math. 217 (2008), no. 3, 1053–1071. MR 2383894, DOI 10.1016/j.aim.2007.08.001
- Yi-Zhi Huang, Vertex operator algebras, the Verlinde conjecture, and modular tensor categories, Proc. Natl. Acad. Sci. USA 102 (2005), no. 15, 5352–5356. MR 2140309, DOI 10.1073/pnas.0409901102
- André Joyal and Ross Street, Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20–78. MR 1250465, DOI 10.1006/aima.1993.1055
- Yevgenia Kashina, Yorck Sommerhäuser, and Yongchang Zhu, On higher Frobenius-Schur indicators, Mem. Amer. Math. Soc. 181 (2006), no. 855, viii+65. MR 2213320, DOI 10.1090/memo/0855
- Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145, DOI 10.1007/978-1-4612-0783-2
- Edmund Landau, Über die Klassenzahl der binären quadratischen Formen von negativer Discriminante, Math. Ann. 56 (1903), no. 4, 671–676 (German). MR 1511192, DOI 10.1007/BF01444311
- V. Linchenko and S. Montgomery, A Frobenius-Schur theorem for Hopf algebras, Algebr. Represent. Theory 3 (2000), no. 4, 347–355. Special issue dedicated to Klaus Roggenkamp on the occasion of his 60th birthday. MR 1808131, DOI 10.1023/A:1009949909889
- F. Liu, Z. Wang, Y.-Z. You, and X.-G. Wen, Quantum fidelity, modular transformations, and topological orders in two dimensions, available at arXiv:1303.0829.
- Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR 0354798
- Geoffrey Mason and Siu-Hung Ng, Central invariants and Frobenius-Schur indicators for semisimple quasi-Hopf algebras, Adv. Math. 190 (2005), no. 1, 161–195. MR 2104908, DOI 10.1016/j.aim.2003.12.004
- Gregory Moore and Nathan Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), no. 2, 177–254. MR 1002038, DOI 10.1007/BF01238857
- Michael Müger, From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors, J. Pure Appl. Algebra 180 (2003), no. 1-2, 159–219. MR 1966525, DOI 10.1016/S0022-4049(02)00248-7
- Michael Müger, On the structure of modular categories, Proc. London Math. Soc. (3) 87 (2003), no. 2, 291–308. MR 1990929, DOI 10.1112/S0024611503014187
- Deepak Naidu and Eric C. Rowell, A finiteness property for braided fusion categories, Algebr. Represent. Theory 14 (2011), no. 5, 837–855. MR 2832261, DOI 10.1007/s10468-010-9219-5
- Siu-Hung Ng and Peter Schauenburg, Central invariants and higher indicators for semisimple quasi-Hopf algebras, Trans. Amer. Math. Soc. 360 (2008), no. 4, 1839–1860. MR 2366965, DOI 10.1090/S0002-9947-07-04276-6
- Siu-Hung Ng and Peter Schauenburg, Congruence subgroups and generalized Frobenius-Schur indicators, Comm. Math. Phys. 300 (2010), no. 1, 1–46. MR 2725181, DOI 10.1007/s00220-010-1096-6
- Siu-Hung Ng and Peter Schauenburg, Frobenius-Schur indicators and exponents of spherical categories, Adv. Math. 211 (2007), no. 1, 34–71. MR 2313527, DOI 10.1016/j.aim.2006.07.017
- Siu-Hung Ng and Peter Schauenburg, Higher Frobenius-Schur indicators for pivotal categories, Hopf algebras and generalizations, Contemp. Math., vol. 441, Amer. Math. Soc., Providence, RI, 2007, pp. 63–90. MR 2381536, DOI 10.1090/conm/441/08500
- Victor Ostrik, On formal codegrees of fusion categories, Math. Res. Lett. 16 (2009), no. 5, 895–901. MR 2576705, DOI 10.4310/MRL.2009.v16.n5.a11
- Viktor Ostrik, Module categories over the Drinfeld double of a finite group, Int. Math. Res. Not. 27 (2003), 1507–1520. MR 1976233, DOI 10.1155/S1073792803205079
- N. Reshetikhin and V. G. Turaev, Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597. MR 1091619, DOI 10.1007/BF01239527
- Eric Rowell, Richard Stong, and Zhenghan Wang, On classification of modular tensor categories, Comm. Math. Phys. 292 (2009), no. 2, 343–389. MR 2544735, DOI 10.1007/s00220-009-0908-z
- Peter Schauenburg, On the Frobenius-Schur indicators for quasi-Hopf algebras, J. Algebra 282 (2004), no. 1, 129–139. MR 2095575, DOI 10.1016/j.jalgebra.2004.08.015
- Yorck Sommerhäuser and Yongchang Zhu, Hopf algebras and congruence subgroups, Mem. Amer. Math. Soc. 219 (2012), no. 1028, vi+134. MR 2985696, DOI 10.1090/S0065-9266-2012-00649-6
- V. G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994. MR 1292673, DOI 10.1515/9783110883275
- Vladimir G. Turaev, Modular categories and $3$-manifold invariants, Internat. J. Modern Phys. B 6 (1992), no. 11-12, 1807–1824. Topological and quantum group methods in field theory and condensed matter physics. MR 1186845, DOI 10.1142/S0217979292000876
- Cumrun Vafa, Toward classification of conformal theories, Phys. Lett. B 206 (1988), no. 3, 421–426. MR 944264, DOI 10.1016/0370-2693(88)91603-6
- K Walker and Z. Wang, $(3+1)$-TQFTS and Topological Insulators, Front. Phys. 7 (2012), no. 2, 150–159., DOI 10.1007/s11467-011-0194-z
- Zhenghan Wang, Quantum computing: a quantum group approach, Symmetries and groups in contemporary physics, Nankai Ser. Pure Appl. Math. Theoret. Phys., vol. 11, World Sci. Publ., Hackensack, NJ, 2013, pp. 41–50. MR 3221449, DOI 10.1142/9789814518550_{0}009
- Zhenghan Wang, Topological quantum computation, CBMS Regional Conference Series in Mathematics, vol. 112, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2010. MR 2640343, DOI 10.1090/cbms/112
- Zhenghan Wang, Topologization of electron liquids with Chern-Simons theory and quantum computation, Differential geometry and physics, Nankai Tracts Math., vol. 10, World Sci. Publ., Hackensack, NJ, 2006, pp. 106–120. MR 2322390
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- Edwin Weiss, Algebraic number theory, Chelsea Publishing Co., New York, 1976. Reprinting of the 1963 original. MR 0417112
\thispagestyle{headings}
Bibliographic Information
- Paul Bruillard
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- Address at time of publication: Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354
- MR Author ID: 893733
- Email: pjb2357@gmail.com
- Siu-Hung Ng
- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- MR Author ID: 343929
- Email: rng@math.lsu.edu
- Eric C. Rowell
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 752263
- Email: rowell@math.tamu.edu
- Zhenghan Wang
- Affiliation: Microsoft Research Station Q and Department of Mathematics, University of California, Santa Barbara, California 93106
- MR Author ID: 324103
- Email: zhenghwa@microsoft.com
- Received by editor(s): August 29, 2014
- Received by editor(s) in revised form: March 13, 2015, and May 26, 2015
- Published electronically: July 21, 2015
- Additional Notes: The first, third, and fourth authors were partially supported by NSF grant DMS1108725.
The second author was partially supported by NSF grants DMS1001566, DMS1303253, and DMS1501179. - © Copyright 2015 American Mathematical Society
- Journal: J. Amer. Math. Soc. 29 (2016), 857-881
- MSC (2010): Primary 18D10; Secondary 57R56, 16T05, 81R50, 17B37
- DOI: https://doi.org/10.1090/jams/842
- MathSciNet review: 3486174