A classification of irreducible admissible mod $p$ representations of $p$-adic reductive groups
HTML articles powered by AMS MathViewer
- by N. Abe, G. Henniart, F. Herzig and M.-F. Vignéras
- J. Amer. Math. Soc. 30 (2017), 495-559
- DOI: https://doi.org/10.1090/jams/862
- Published electronically: June 14, 2016
- PDF | Request permission
Abstract:
Let $F$ be a locally compact non-archimedean field, $p$ its residue characteristic, and $\textbf {G}$ a connected reductive group over $F$. Let $C$ be an algebraically closed field of characteristic $p$. We give a complete classification of irreducible admissible $C$-representations of $G=\mathbf {G}(F)$, in terms of supercuspidal $C$-representations of the Levi subgroups of $G$, and parabolic induction. Thus we push to their natural conclusion the ideas of the third author, who treated the case $\mathbf {G}=\mathrm {GL}_m$, as further expanded by the first author, who treated split groups $\mathbf {G}$. As in the split case, we first get a classification in terms of supersingular representations of Levi subgroups, and as a consequence show that supersingularity is the same as supercuspidality.References
- Ramla Abdellatif, Classification des représentations modulo $p$ de $\textrm {SL}(2,F)$, Bull. Soc. Math. France 142 (2014), no. 3, 537–589 (French, with English and French summaries). MR 3295722, DOI 10.24033/bsmf.2673
- Noriyuki Abe, On a classification of irreducible admissible modulo $p$ representations of a $p$-adic split reductive group, Compos. Math. 149 (2013), no. 12, 2139–2168. MR 3143708, DOI 10.1112/S0010437X13007379
- L. Barthel and R. Livné, Irreducible modular representations of $\textrm {GL}_2$ of a local field, Duke Math. J. 75 (1994), no. 2, 261–292. MR 1290194, DOI 10.1215/S0012-7094-94-07508-X
- L. Barthel and R. Livné, Modular representations of $\textrm {GL}_2$ of a local field: the ordinary, unramified case, J. Number Theory 55 (1995), no. 1, 1–27. MR 1361556, DOI 10.1006/jnth.1995.1124
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172, DOI 10.24033/asens.1333
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150 (French). MR 207712, DOI 10.1007/BF02684375
- N. Bourbaki. Elements of Mathematics. Chapters 4–6: Lie groups and Lie algebras, Springer-Verlag, Berlin, 2002 (Translated from the 1968 French original by Andrew Pressley).
- Christophe Breuil, Sur quelques représentations modulaires et $p$-adiques de $\textrm {GL}_2(\mathbf Q_p)$. I, Compositio Math. 138 (2003), no. 2, 165–188 (French, with English summary). MR 2018825, DOI 10.1023/A:1026191928449
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923, DOI 10.1007/BF02715544
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376 (French). MR 756316
- Marc Cabanes and Michel Enguehard, Representation theory of finite reductive groups, New Mathematical Monographs, vol. 1, Cambridge University Press, Cambridge, 2004. MR 2057756, DOI 10.1017/CBO9780511542763
- Chuangxun Cheng, Mod $p$ representations of $SL_2(\Bbb {Q}_p)$, J. Number Theory 133 (2013), no. 4, 1312–1330. MR 3004002, DOI 10.1016/j.jnt.2012.09.010
- Vinay V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math. 39 (1977), no. 2, 187–198. MR 435249, DOI 10.1007/BF01390109
- Matthew Emerton, Ordinary parts of admissible representations of $p$-adic reductive groups I. Definition and first properties, Astérisque 331 (2010), 355–402 (English, with English and French summaries). MR 2667882
- Elmar Grosse-Klönne, On special representations of $p$-adic reductive groups, Duke Math. J. 163 (2014), no. 12, 2179–2216. MR 3263032, DOI 10.1215/00127094-2785697
- Elmar Große-Klönne, On the universal module of $p$-adic spherical Hecke algebras, Amer. J. Math. 136 (2014), no. 3, 599–652. MR 3214272, DOI 10.1353/ajm.2014.0019
- Guy Henniart, Sur les représentations modulo $p$ de groupes réductifs $p$-adiques, Automorphic forms and $L$-functions II. Local aspects, Contemp. Math., vol. 489, Amer. Math. Soc., Providence, RI, 2009, pp. 41–55 (French, with English and French summaries). MR 2533002, DOI 10.1090/conm/489/09546
- Guy Henniart and Marie-France Vignéras, A Satake isomorphism for representations modulo $p$ of reductive groups over local fields, J. Reine Angew. Math. 701 (2015), 33–75. MR 3331726, DOI 10.1515/crelle-2013-0021
- Guy Henniart and Marie-France Vigneras, Comparison of compact induction with parabolic induction, Pacific J. Math. 260 (2012), no. 2, 457–495. MR 3001801, DOI 10.2140/pjm.2012.260.457
- Florian Herzig, A Satake isomorphism in characteristic $p$, Compos. Math. 147 (2011), no. 1, 263–283. MR 2771132, DOI 10.1112/S0010437X10004951
- Florian Herzig, The classification of irreducible admissible mod $p$ representations of a $p$-adic $\textrm {GL}_n$, Invent. Math. 186 (2011), no. 2, 373–434. MR 2845621, DOI 10.1007/s00222-011-0321-z
- Robert E. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), no. 3, 255–339. MR 1485921, DOI 10.1023/A:1000102604688
- K. Koziol. A Classification of the Irreducible mod-$p$ Representations of $U(1,1)(\mathbb {Q}_{p^2}/\mathbb {Q}_p)$. Ann. Inst. Fourier 66 (2016), no. 4, 1545–1582.
- Karol Kozioł and Peng Xu, Hecke modules and supersingular representations of $\textrm {U}(2,1)$, Represent. Theory 19 (2015), 56–93. MR 3321473, DOI 10.1090/S1088-4165-2015-00462-5
- Tony Ly, Représentations de Steinberg modulo $p$ pour un groupe réductif sur un corps local, Pacific J. Math. 277 (2015), no. 2, 425–462 (French, with English and French summaries). MR 3402357, DOI 10.2140/pjm.2015.277.425
- Tony Ly, Des représentations modulo $p$ de $\textrm {GL}(2,D)$, $D$ algèbre à division sur un corps local, J. Number Theory 151 (2015), 54–106 (French, with English summary). MR 3314202, DOI 10.1016/j.jnt.2014.12.013
- T. Ly. Représentations modulo $p$ de $\mathrm {GL}(m,D)$, $D$ algèbre à division sur un corps local, Thèse. 2013. ArXiv 1409.4686v1 [math.RT].
- Alberto Mínguez and Vincent Sécherre, Représentations lisses modulo $\ell$ de $\mathrm {GL}_m({D})$, Duke Math. J. 163 (2014), no. 4, 795–887 (French, with English and French summaries). MR 3178433, DOI 10.1215/00127094-2430025
- Deane Montgomery and Leo Zippin, Topological transformation groups, Robert E. Krieger Publishing Co., Huntington, N.Y., 1974. Reprint of the 1955 original. MR 0379739
- Rachel Ollivier, Parabolic induction and Hecke modules in characteristic $p$ for $p$-adic $\textrm {GL}_n$, Algebra Number Theory 4 (2010), no. 6, 701–742. MR 2728487, DOI 10.2140/ant.2010.4.701
- Rachel Ollivier, An inverse Satake isomorphism in characteristic $p$, Selecta Math. (N.S.) 21 (2015), no. 3, 727–761. MR 3366919, DOI 10.1007/s00029-014-0157-7
- Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
- Gopal Prasad and M. S. Raghunathan, On the Kneser-Tits problem, Comment. Math. Helv. 60 (1985), no. 1, 107–121. MR 787664, DOI 10.1007/BF02567402
- Schémas en groupes, Tome III, Structure des schémas en groupes réductifs, Documents mathématiques 8, Société Mathématique de France, 2011.
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR 546588
- Marie-France Vignéras, Représentations irréductibles de $\textrm {GL}(2,F)$ modulo $p$, $L$-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 548–563 (French, with English summary). MR 2392364, DOI 10.1017/CBO9780511721267.015
- M.-F. Vignéras. The right adjoint of the parabolic induction, in Arbeitstagung Bonn 2013: In Memory of Friedrich Hirzebruch. To appear in Progress in Math.
- Marie-France Vigneras, The pro-$p$-Iwahori Hecke algebra of a reductive $p$-adic group I, Compos. Math. 152 (2016), no. 4, 693–753. MR 3484112, DOI 10.1112/S0010437X15007666
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084, DOI 10.24033/asens.1379
Bibliographic Information
- N. Abe
- Affiliation: Creative Research Institution (CRIS), Hokkaido University, N21, W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- MR Author ID: 858099
- Email: abenori@math.sci.hokudai.ac.jp
- G. Henniart
- Affiliation: Laboratoire de Mathématiques d’Orsay, Université de Paris-Sud, Orsay cedex F-91405, France; CNRS, Orsay cedex F-91405, France
- MR Author ID: 84385
- Email: Guy.Henniart@math.u-psud.fr
- F. Herzig
- Affiliation: Department of Mathematics, University of Toronto, 40 St. George Street, Room 6290, Toronto, Ontario M5S 2E4, Canada
- MR Author ID: 876324
- Email: herzig@math.toronto.edu
- M.-F. Vignéras
- Affiliation: Institut de Mathématiques de Jussieu, 175 rue du Chevaleret, Paris 75013, France
- Email: vigneras@math.jussieu.fr
- Received by editor(s): December 6, 2014
- Received by editor(s) in revised form: January 23, 2016, and May 3, 2016
- Published electronically: June 14, 2016
- Additional Notes: The first author was supported by JSPS KAKENHI Grant 26707001.
The third author was partially supported by a Sloan Fellowship and an NSERC grant. - © Copyright 2016 American Mathematical Society
- Journal: J. Amer. Math. Soc. 30 (2017), 495-559
- MSC (2010): Primary 22E50
- DOI: https://doi.org/10.1090/jams/862
- MathSciNet review: 3600042