Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics
HTML articles powered by AMS MathViewer
- by Tamás Darvas and Yanir A. Rubinstein;
- J. Amer. Math. Soc. 30 (2017), 347-387
- DOI: https://doi.org/10.1090/jams/873
- Published electronically: December 8, 2016
Abstract:
Well-known conjectures of Tian predict that the existence of canonical Kähler metrics should be equivalent to various notions of properness of Mabuchi’s K-energy functional. First, we provide counterexamples to Tian’s first conjecture in the presence of continuous automorphisms. Second, we resolve Tian’s second conjecture, confirming the Moser–Trudinger inequality for Fano manifolds. The construction hinges upon an alternative approach to properness that uses in an essential way the metric completion with respect to a Finsler metric and its quotients with respect to group actions. This approach also allows us to formulate and prove new optimal replacements for Tian’s first conjecture in the setting of smooth and singular Kähler–Einstein metrics, with or without automorphisms, as well as for Kähler–Ricci solitons. Moreover, we reduce both Tian’s original first conjecture (in the absence of automorphisms) and our modification of it (in the presence of automorphisms) in the general case of constant scalar curvature metrics to a conjecture on regularity of minimizers of the K-energy in the Finsler metric completion.References
- Thierry Aubin, Réduction du cas positif de l’équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité, J. Funct. Anal. 57 (1984), no. 2, 143–153 (French). MR 749521, DOI 10.1016/0022-1236(84)90093-4
- Thierry Aubin, Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1636569, DOI 10.1007/978-3-662-13006-3
- Shigetoshi Bando and Toshiki Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 11–40. MR 946233, DOI 10.2969/aspm/01010011
- Eric Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), no. 1-2, 1–40. MR 674165, DOI 10.1007/BF02392348
- Robert J. Berman, A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics, Adv. Math. 248 (2013), 1254–1297. MR 3107540, DOI 10.1016/j.aim.2013.08.024
- Robert Berman and Sébastien Boucksom, Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math. 181 (2010), no. 2, 337–394. MR 2657428, DOI 10.1007/s00222-010-0248-9
- R. J. Berman and R. Berndtsson, Convexity of the K-energy on the space of Kähler metrics, preprint, arxiv:1405.0401.
- Robert J. Berman, Sébastien Boucksom, Vincent Guedj, and Ahmed Zeriahi, A variational approach to complex Monge-Ampère equations, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 179–245. MR 3090260, DOI 10.1007/s10240-012-0046-6
- Sébastien Boucksom, Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi, Monge-Ampère equations in big cohomology classes, Acta Math. 205 (2010), no. 2, 199–262. MR 2746347, DOI 10.1007/s11511-010-0054-7
- R. J. Berman and D. Witt-Nystrom, Complex optimal transport and the pluripotential theory of Kähler-Ricci solitons, preprint, arxiv:1401.8264.
- Bo Berndtsson, A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math. 200 (2015), no. 1, 149–200. MR 3323577, DOI 10.1007/s00222-014-0532-1
- Zbigniew Błocki and Sławomir Kołodziej, On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2089–2093. MR 2299485, DOI 10.1090/S0002-9939-07-08858-2
- S. Boucksom, R. Berman, P. Eyssidieux, V. Guedj, and A. Zeriahi, Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, preprint, arxiv:1111.7158.
- Daniel Bump, Lie groups, Graduate Texts in Mathematics, vol. 225, Springer-Verlag, New York, 2004. MR 2062813, DOI 10.1007/978-1-4757-4094-3
- Huai-Dong Cao, Gang Tian, and Xiaohua Zhu, Kähler-Ricci solitons on compact complex manifolds with $C_1(M)>0$, Geom. Funct. Anal. 15 (2005), no. 3, 697–719. MR 2221147, DOI 10.1007/s00039-005-0522-y
- Eugenio Calabi, Extremal isosystolic metrics for compact surfaces, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992) Sémin. Congr., vol. 1, Soc. Math. France, Paris, 1996, pp. 167–204 (English, with English and French summaries). MR 1427758
- Ivan A. Cheltsov and Yanir A. Rubinstein, Asymptotically log Fano varieties, Adv. Math. 285 (2015), 1241–1300. MR 3406526, DOI 10.1016/j.aim.2015.08.001
- X. X. Chen, A new parabolic flow in Kähler manifolds, Comm. Anal. Geom. 12 (2004), no. 4, 837–852. MR 2104078, DOI 10.4310/CAG.2004.v12.n4.a4
- Xiuxiong Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), no. 2, 189–234. MR 1863016
- Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015), no. 1, 183–197. MR 3264766, DOI 10.1090/S0894-0347-2014-00799-2
- Brian Clarke and Yanir A. Rubinstein, Ricci flow and the metric completion of the space of Kähler metrics, Amer. J. Math. 135 (2013), no. 6, 1477–1505. MR 3145001, DOI 10.1353/ajm.2013.0051
- T. Darvas, The Mabuchi completion of the space of Kähler potentials, Amer. J. Math., to appear.
- Tamás Darvas, The Mabuchi geometry of finite energy classes, Adv. Math. 285 (2015), 182–219. MR 3406499, DOI 10.1016/j.aim.2015.08.005
- T. Darvas and W. He, Geodesic rays and Kähler-Ricci trajectories on Fano manifolds, preprint, arxiv:1411.0774
- J. P. Demailly, Complex Analytic and Differential Geometry, https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf.
- Wei Yue Ding, Remarks on the existence problem of positive Kähler-Einstein metrics, Math. Ann. 282 (1988), no. 3, 463–471. MR 967024, DOI 10.1007/BF01460045
- W.Y. Ding and G. Tian, The generalized Moser-Trudinger inequality, in Nonlinear Analysis and Microlocal Analysis (K.-C. Chang et al., Eds.), World Scientific, 1992, pp. 57–70.
- Igor V. Dolgachev, Classical algebraic geometry, Cambridge University Press, Cambridge, 2012. A modern view. MR 2964027, DOI 10.1017/CBO9781139084437
- S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 13–33. MR 1736211, DOI 10.1090/trans2/196/02
- A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983), no. 3, 437–443. MR 718940, DOI 10.1007/BF01388438
- P. Gauduchon, Calabi’s extremal metrics: an elementary introduction, manuscript, 2010.
- V. Guedj, The metric completion of the Riemannian space of Kähler metrics, preprint, arxiv:1401.7857.
- Vincent Guedj and Ahmed Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), no. 2, 442–482. MR 2352488, DOI 10.1016/j.jfa.2007.04.018
- Henri Guenancia and Mihai Păun, Conic singularities metrics with prescribed Ricci curvature: general cone angles along normal crossing divisors, J. Differential Geom. 103 (2016), no. 1, 15–57. MR 3488129
- W. Hazod, K. H. Hofmann, H.-P. Scheffler, M. Wüstner, and H. Zeuner, Normalizers of compact subgroups, the existence of commuting automorphisms, and applications to operator semistable measures, J. Lie Theory 8 (1998), no. 2, 189–209. MR 1650333
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original. MR 1834454, DOI 10.1090/gsm/034
- Thalia Jeffres, Rafe Mazzeo, and Yanir A. Rubinstein, Kähler-Einstein metrics with edge singularities, Ann. of Math. (2) 183 (2016), no. 1, 95–176. MR 3432582, DOI 10.4007/annals.2016.183.1.3
- Sławomir Kołodziej, The complex Monge-Ampère equation and pluripotential theory, Mem. Amer. Math. Soc. 178 (2005), no. 840, x+64. MR 2172891, DOI 10.1090/memo/0840
- Chi Li and Song Sun, Conical Kähler-Einstein metrics revisited, Comm. Math. Phys. 331 (2014), no. 3, 927–973. MR 3248054, DOI 10.1007/s00220-014-2123-9
- André Lichnerowicz, Transformations analytiques et isométries d’une variété kählérienne compacte, C. R. Acad. Sci. Paris 247 (1958), 855–857 (French). MR 105716
- Toshiki Mabuchi, Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math. 24 (1987), no. 2, 227–252. MR 909015
- Toshiki Mabuchi, Multiplier Hermitian structures on Kähler manifolds, Nagoya Math. J. 170 (2003), 73–115. MR 1994888, DOI 10.1017/S0027763000008540
- Yozô Matsushima, Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne, Nagoya Math. J. 11 (1957), 145–150 (French). MR 94478, DOI 10.1017/S0027763000002026
- D. H. Phong, Jian Song, and Jacob Sturm, Complex Monge-Ampère equations, Surveys in differential geometry. Vol. XVII, Surv. Differ. Geom., vol. 17, Int. Press, Boston, MA, 2012, pp. 327–410. MR 3076065, DOI 10.4310/SDG.2012.v17.n1.a8
- D. H. Phong, Jian Song, Jacob Sturm, and Ben Weinkove, The Moser-Trudinger inequality on Kähler-Einstein manifolds, Amer. J. Math. 130 (2008), no. 4, 1067–1085. MR 2427008, DOI 10.1353/ajm.0.0013
- D. H. Phong and Jacob Sturm, Lectures on stability and constant scalar curvature, Current developments in mathematics, 2007, Int. Press, Somerville, MA, 2009, pp. 101–176. MR 2532997
- M. M. Postnikov, Geometry VI, Encyclopaedia of Mathematical Sciences, vol. 91, Springer-Verlag, Berlin, 2001. Riemannian geometry; Translated from the 1998 Russian edition by S. A. Vakhrameev. MR 1824853, DOI 10.1007/978-3-662-04433-9
- Yanir A. Rubinstein, On energy functionals, Kähler-Einstein metrics, and the Moser-Trudinger-Onofri neighborhood, J. Funct. Anal. 255 (2008), no. 9, 2641–2660. MR 2473271, DOI 10.1016/j.jfa.2007.10.009
- Yanir A. Rubinstein, Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics, Adv. Math. 218 (2008), no. 5, 1526–1565. MR 2419932, DOI 10.1016/j.aim.2008.03.017
- Yanir A. Rubinstein, Smooth and singular Kähler-Einstein metrics, Geometric and spectral analysis, Contemp. Math., vol. 630, Amer. Math. Soc., Providence, RI, 2014, pp. 45–138. MR 3328541, DOI 10.1090/conm/630/12665
- Yuji Sano, The best constant of the Moser-Trudinger inequality on $S^2$, Trans. Amer. Math. Soc. 356 (2004), no. 9, 3477–3482. MR 2055742, DOI 10.1090/S0002-9947-03-03483-4
- Stephen Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), no. 3, 495–550. MR 1165352, DOI 10.2307/2374768
- Yum Tong Siu, The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group, Ann. of Math. (2) 127 (1988), no. 3, 585–627. MR 942521, DOI 10.2307/2007006
- Jian Song and Ben Weinkove, Energy functionals and canonical Kähler metrics, Duke Math. J. 137 (2007), no. 1, 159–184. MR 2309146, DOI 10.1215/S0012-7094-07-13715-3
- Jian Song and Ben Weinkove, On the convergence and singularities of the $J$-flow with applications to the Mabuchi energy, Comm. Pure Appl. Math. 61 (2008), no. 2, 210–229. MR 2368374, DOI 10.1002/cpa.20182
- Jeffrey Streets, Long time existence of minimizing movement solutions of Calabi flow, Adv. Math. 259 (2014), 688–729. MR 3197669, DOI 10.1016/j.aim.2014.03.027
- Markus Stroppel, Locally compact groups, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2006. MR 2226087, DOI 10.4171/016
- R. P. Thomas, Notes on GIT and symplectic reduction for bundles and varieties, Surveys in differential geometry. Vol. X, Surv. Differ. Geom., vol. 10, Int. Press, Somerville, MA, 2006, pp. 221–273. MR 2408226, DOI 10.4310/SDG.2005.v10.n1.a7
- Gang Tian, The $K$-energy on hypersurfaces and stability, Comm. Anal. Geom. 2 (1994), no. 2, 239–265. MR 1312688, DOI 10.4310/CAG.1994.v2.n2.a4
- Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37. MR 1471884, DOI 10.1007/s002220050176
- Gang Tian, Canonical metrics in Kähler geometry, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2000. Notes taken by Meike Akveld. MR 1787650, DOI 10.1007/978-3-0348-8389-4
- Gang Tian and Shing-Tung Yau, Kähler-Einstein metrics on complex surfaces with $C_1>0$, Comm. Math. Phys. 112 (1987), no. 1, 175–203. MR 904143, DOI 10.1007/BF01217685
- Gang Tian, Existence of Einstein metrics on Fano manifolds, Metric and differential geometry, Progr. Math., vol. 297, Birkhäuser/Springer, Basel, 2012, pp. 119–159. MR 3220441, DOI 10.1007/978-3-0348-0257-4_{5}
- Gang Tian and Xiaohua Zhu, A nonlinear inequality of Moser-Trudinger type, Calc. Var. Partial Differential Equations 10 (2000), no. 4, 349–354. MR 1767718, DOI 10.1007/s005260010349
- Gang Tian and Xiaohua Zhu, Uniqueness of Kähler-Ricci solitons, Acta Math. 184 (2000), no. 2, 271–305. MR 1768112, DOI 10.1007/BF02392630
- G. Tian, K-stability implies CM-stability, preprint, arxiv:1409.7836.
- Gang Tian, K-stability and Kähler-Einstein metrics, Comm. Pure Appl. Math. 68 (2015), no. 7, 1085–1156. MR 3352459, DOI 10.1002/cpa.21578
- G. Tian and X.-H. Zhu, Properness of log F-functionals, preprint, arxiv:1504.03197.
- Ahmed Zeriahi, Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions, Indiana Univ. Math. J. 50 (2001), no. 1, 671–703. MR 1857051, DOI 10.1512/iumj.2001.50.2062
- Xi Zhang and Xiangwen Zhang, Generalized Kähler-Einstein metrics and energy functionals, Canad. J. Math. 66 (2014), no. 6, 1413–1435. MR 3270789, DOI 10.4153/CJM-2013-034-3
- Bin Zhou and Xiaohua Zhu, Relative $K$-stability and modified $K$-energy on toric manifolds, Adv. Math. 219 (2008), no. 4, 1327–1362. MR 2450612, DOI 10.1016/j.aim.2008.06.016
- Xiaohua Zhu, Kähler-Ricci soliton typed equations on compact complex manifolds with $C_1(M)>0$, J. Geom. Anal. 10 (2000), no. 4, 759–774. MR 1817785, DOI 10.1007/BF02921996
Bibliographic Information
- Tamás Darvas
- Affiliation: Department of Mathematics, University of Maryland, 4176 Campus Drive, College Park, Maryland 20742-4015
- MR Author ID: 1016588
- Email: tdarvas@math.umd.edu
- Yanir A. Rubinstein
- Affiliation: Department of Mathematics, University of Maryland, 4176 Campus Drive, College Park, Maryland 20742-4015
- MR Author ID: 795645
- Email: yanir@umd.edu
- Received by editor(s): August 5, 2015
- Published electronically: December 8, 2016
- Additional Notes: The authors were supported by BSF grant 2012236, NSF grants DMS-1206284 and 1515703, and a Sloan Research Fellowship.
- © Copyright 2016 Tamás Darvas and Yanir Rubinstein
- Journal: J. Amer. Math. Soc. 30 (2017), 347-387
- MSC (2010): Primary 32Q20, 58E11; Secondary 14J50, 32W20, 32U05
- DOI: https://doi.org/10.1090/jams/873
- MathSciNet review: 3600039