Tropical curves, graph complexes, and top weight cohomology of $\mathcal {M}_g$
HTML articles powered by AMS MathViewer
- by Melody Chan, Søren Galatius and Sam Payne
- J. Amer. Math. Soc. 34 (2021), 565-594
- DOI: https://doi.org/10.1090/jams/965
- Published electronically: February 2, 2021
- HTML | PDF | Request permission
Abstract:
We study the topology of a space $\Delta _{g}$ parametrizing stable tropical curves of genus $g$ with volume $1$, showing that its reduced rational homology is canonically identified with both the top weight cohomology of $\mathcal {M}_g$ and also with the genus $g$ part of the homology of Kontsevich’s graph complex. Using a theorem of Willwacher relating this graph complex to the Grothendieck–Teichmüller Lie algebra, we deduce that $H^{4g-6}(\mathcal {M}_g;\mathbb {Q})$ is nonzero for $g=3$, $g=5$, and $g \geq 7$, and in fact its dimension grows at least exponentially in $g$. This disproves a recent conjecture of Church, Farb, and Putman as well as an older, more general conjecture of Kontsevich. We also give an independent proof of another theorem of Willwacher, that homology of the graph complex vanishes in negative degrees.References
- Donu Arapura, Parsa Bakhtary, and Jarosław Włodarczyk, Weights on cohomology, invariants of singularities, and dual complexes, Math. Ann. 357 (2013), no. 2, 513–550. MR 3096516, DOI 10.1007/s00208-013-0912-7
- Enrico Arbarello, Maurizio Cornalba, and Phillip A. Griffiths, Geometry of algebraic curves. Volume II, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 268, Springer, Heidelberg, 2011. With a contribution by Joseph Daniel Harris. MR 2807457, DOI 10.1007/978-3-540-69392-5
- Dan Abramovich, Lucia Caporaso, and Sam Payne, The tropicalization of the moduli space of curves, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 4, 765–809 (English, with English and French summaries). MR 3377065, DOI 10.24033/asens.2258
- Assar Andersson, Thomas Willwacher, and Marko Živković, Oriented hairy graphs and moduli spaces of curves, preprint arXiv:2005.00439v1, 2020.
- K. Behrend, Cohomology of stacks, Intersection theory and moduli, ICTP Lect. Notes, XIX, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 249–294. MR 2172499
- Vladimir G. Berkovich, Smooth $p$-adic analytic spaces are locally contractible, Invent. Math. 137 (1999), no. 1, 1–84. MR 1702143, DOI 10.1007/s002220050323
- Silvia Brannetti, Margarida Melo, and Filippo Viviani, On the tropical Torelli map, Adv. Math. 226 (2011), no. 3, 2546–2586. MR 2739784, DOI 10.1016/j.aim.2010.09.011
- Dror Bar-Natan and Brendan D. McKay, Graph cohomology – an overview and some computations, (2001), http://www.math.toronto.edu/~drorbn/papers/GCOC/GCOC.ps.
- Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, New York, 1993. MR 1224675, DOI 10.1007/978-1-4757-6848-0
- Francis Brown, Mixed Tate motives over $\Bbb Z$, Ann. of Math. (2) 175 (2012), no. 2, 949–976. MR 2993755, DOI 10.4007/annals.2012.175.2.10
- Lucia Caporaso, Algebraic and tropical curves: comparing their moduli spaces, Handbook of moduli. Vol. I, Adv. Lect. Math. (ALM), vol. 24, Int. Press, Somerville, MA, 2013, pp. 119–160. MR 3184163
- Thomas Church, Benson Farb, and Andrew Putman, The rational cohomology of the mapping class group vanishes in its virtual cohomological dimension, Int. Math. Res. Not. IMRN 21 (2012), 5025–5030. MR 2993444, DOI 10.1093/imrn/rnr208
- Thomas Church, Benson Farb, and Andrew Putman, A stability conjecture for the unstable cohomology of $\textrm {SL}_n\Bbb Z$, mapping class groups, and $\textrm {Aut}(F_n)$, Algebraic topology: applications and new directions, Contemp. Math., vol. 620, Amer. Math. Soc., Providence, RI, 2014, pp. 55–70. MR 3290086, DOI 10.1090/conm/620/12366
- Melody Chan, Søren Galatius, and Sam Payne, Tropical curves, graph complexes, and top weight cohomology of $\mathcal {M}_g$, preprint arXiv:1805.10186v1, 2018.
- Melody Chan, Søren Galatius, and Sam Payne, Topology of moduli spaces of tropical curves with marked points, To appear in Facets of Algebraic Geometry: A Volume in Honour of William Fulton’s 80th Birthday, 2019. preprint arXiv:1903.07187
- James Conant, Ferenc Gerlits, and Karen Vogtmann, Cut vertices in commutative graphs, Q. J. Math. 56 (2005), no. 3, 321–336. MR 2161246, DOI 10.1093/qmath/hah040
- James Conant and Karen Vogtmann, On a theorem of Kontsevich, Algebr. Geom. Topol. 3 (2003), 1167–1224. MR 2026331, DOI 10.2140/agt.2003.3.1167
- V. I. Danilov, Polyhedra of schemes and algebraic varieties, Mat. Sb. (N.S.) 139 (1975), no. 1, 146–158, 160 (Russian); Russian transl., Math. USSR-Sb. 26 (1975), no. 1, 137–149 (1976). MR 0441970
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551, DOI 10.1007/BF02684692
- P. Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. (1974), no. 44, 5–77.
- Tommaso de Fernex, János Kollár, and Chenyang Xu, The dual complex of singularities, Higher dimensional algebraic geometry—in honour of Professor Yujiro Kawamata’s sixtieth birthday, Adv. Stud. Pure Math., vol. 74, Math. Soc. Japan, Tokyo, 2017, pp. 103–129. MR 3791210, DOI 10.2969/aspm/07410103
- V. A. Dolgushev, C. L. Rogers, and T. H. Willwacher, Kontsevich’s graph complex, GRT, and the deformation complex of the sheaf of polyvector fields, Ann. of Math. (2) 182 (2015), no. 3, 855–943. MR 3418532, DOI 10.4007/annals.2015.182.3.2
- Dan Edidin, Equivariant geometry and the cohomology of the moduli space of curves, Handbook of moduli. Vol. I, Adv. Lect. Math. (ALM), vol. 24, Int. Press, Somerville, MA, 2013, pp. 259–292. MR 3184166
- E. Getzler and M. M. Kapranov, Modular operads, Compositio Math. 110 (1998), no. 1, 65–126. MR 1601666, DOI 10.1023/A:1000245600345
- Marco Grandis, Finite sets and symmetric simplicial sets, Theory Appl. Categ. 8 (2001), 244–252. MR 1825431
- W. J. Harvey, Boundary structure of the modular group, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 245–251. MR 624817
- John L. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986), no. 1, 157–176. MR 830043, DOI 10.1007/BF01388737
- John L. Harer, The cohomology of the moduli space of curves, Theory of moduli (Montecatini Terme, 1985) Lecture Notes in Math., vol. 1337, Springer, Berlin, 1988, pp. 138–221. MR 963064, DOI 10.1007/BFb0082808
- Alicia Harper, Factorization for stacks and boundary complexes, preprint arXiv:1706.07999, 2017.
- Allen Hatcher, Homological stability for automorphism groups of free groups, Comment. Math. Helv. 70 (1995), no. 1, 39–62. MR 1314940, DOI 10.1007/BF02565999
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- G. H. Hardy and S. Ramanujan, Asymptotic formulæ for the distribution of integers of various types, Proc. Lond. Math. Soc. (3) s2-16 (1917), no. 1, 112–132.
- Allen Hatcher and Karen Vogtmann, Cerf theory for graphs, J. London Math. Soc. (2) 58 (1998), no. 3, 633–655. MR 1678155, DOI 10.1112/S0024610798006644
- J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986), no. 3, 457–485. MR 848681, DOI 10.1007/BF01390325
- Vik. S. Kulikov and P. F. Kurchanov, Complex algebraic varieties: periods of integrals and Hodge structures [ MR1060327 (91k:14010)], Algebraic geometry, III, Encyclopaedia Math. Sci., vol. 36, Springer, Berlin, 1998, pp. 1–217, 263–270. MR 1602375, DOI 10.1007/978-3-662-03662-4_{1}
- M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244, DOI 10.1007/BF02101490
- Maxim Kontsevich, Formal (non)commutative symplectic geometry, The Gel′fand Mathematical Seminars, 1990–1992, Birkhäuser Boston, Boston, MA, 1993, pp. 173–187. MR 1247289
- Maxim Kontsevich, Feynman diagrams and low-dimensional topology, First European Congress of Mathematics, Vol. II (Paris, 1992) Progr. Math., vol. 120, Birkhäuser, Basel, 1994, pp. 97–121. MR 1341841
- Anton Khoroshkin, Thomas Willwacher, and Marko Živković, Differentials on graph complexes, Adv. Math. 307 (2017), 1184–1214. MR 3590540, DOI 10.1016/j.aim.2016.05.029
- János Kollár and Chenyang Xu, The dual complex of Calabi-Yau pairs, Invent. Math. 205 (2016), no. 3, 527–557. MR 3539921, DOI 10.1007/s00222-015-0640-6
- Eduard Looijenga, Cohomology of ${\scr M}_3$ and ${\scr M}^1_3$, Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991) Contemp. Math., vol. 150, Amer. Math. Soc., Providence, RI, 1993, pp. 205–228. MR 1234266, DOI 10.1090/conm/150/01292
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- Shigeyuki Morita, Takuya Sakasai, and Masaaki Suzuki, Abelianizations of derivation Lie algebras of the free associative algebra and the free Lie algebra, Duke Math. J. 162 (2013), no. 5, 965–1002. MR 3047471, DOI 10.1215/00127094-2140560
- Shigeyuki Morita, Takuya Sakasai, and Masaaki Suzuki, Computations in formal symplectic geometry and characteristic classes of moduli spaces, Quantum Topol. 6 (2015), no. 1, 139–182. MR 3335007, DOI 10.4171/QT/61
- Sam Payne, Boundary complexes and weight filtrations, Michigan Math. J. 62 (2013), no. 2, 293–322. MR 3079265, DOI 10.1307/mmj/1370870374
- Chris A. M. Peters and Joseph H. M. Steenbrink, Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 52, Springer-Verlag, Berlin, 2008. MR 2393625
- Carlo A. Rossi and Thomas Willwacher, P. Etingof’s conjecture about Drinfeld associators, preprint arXiv:1404.2047, 2014.
- Carlos Simpson, The dual boundary complex of the $SL_2$ character variety of a punctured sphere, Ann. Fac. Sci. Toulouse Math. (6) 25 (2016), no. 2-3, 317–361 (English, with English and French summaries). MR 3530160, DOI 10.5802/afst.1496
- The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2017.
- D. A. Stepanov, A note on resolution of rational and hypersurface singularities, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2647–2654. MR 2399025, DOI 10.1090/S0002-9939-08-09289-7
- Orsola Tommasi, Rational cohomology of the moduli space of genus 4 curves, Compos. Math. 141 (2005), no. 2, 359–384. MR 2134272, DOI 10.1112/S0010437X0400123X
- Karen Vogtmann, On the geometry of outer space, Bull. Amer. Math. Soc. (N.S.) 52 (2015), no. 1, 27–46. MR 3286480, DOI 10.1090/S0273-0979-2014-01466-1
- Thomas Willwacher, M. Kontsevich’s graph complex and the Grothendieck-Teichmüller Lie algebra, Invent. Math. 200 (2015), no. 3, 671–760. MR 3348138, DOI 10.1007/s00222-014-0528-x
Bibliographic Information
- Melody Chan
- Affiliation: Department of Mathematics, Brown University, 151 Thayer Street, Box 1917, Providence, RI 02912
- MR Author ID: 791839
- Email: melody_chan@brown.edu
- Søren Galatius
- Affiliation: Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen OE, Denmark
- ORCID: 0000-0002-1015-7322
- Email: galatius@math.ku.dk
- Sam Payne
- Affiliation: Department of Mathematics, The University of Texas at Austin, 2515 Speedway, PMA 8.100, Austin, TX 78712
- MR Author ID: 652681
- Email: sampayne@utexas.edu
- Received by editor(s): July 4, 2018
- Received by editor(s) in revised form: July 23, 2020
- Published electronically: February 2, 2021
- Additional Notes: The first author was supported by NSF DMS-1204278, DMS-1701924, CAREER DMS-1844768, a Sloan Fellowship and a Henry Merritt Wriston Fellowship.
The second author was supported by NSF DMS-1405001 and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 682922), by the EliteForsk Prize, and by the Danish National Research Foundation (DNRF92 and DNRF151).
The third author was supported by NSF DMS-1702428 and a Simons Fellowship. - © Copyright 2021 American Mathematical Society
- Journal: J. Amer. Math. Soc. 34 (2021), 565-594
- MSC (2020): Primary 14H10, 14T20
- DOI: https://doi.org/10.1090/jams/965
- MathSciNet review: 4322978