Algebraicity of the metric tangent cones and equivariant K-stability
HTML articles powered by AMS MathViewer
- by Chi Li, Xiaowei Wang and Chenyang Xu;
- J. Amer. Math. Soc. 34 (2021), 1175-1214
- DOI: https://doi.org/10.1090/jams/974
- Published electronically: April 9, 2021
- HTML | PDF | Request permission
Abstract:
We prove two new results on the $K$-polystability of $\mathbb {Q}$-Fano varieties based on purely algebro-geometric arguments. The first one says that any $K$-semistable log Fano cone has a special degeneration to a uniquely determined $K$-polystable log Fano cone. As a corollary, we combine it with the differential-geometric results to complete the proof of Donaldson-Sun’s conjecture which says that the metric tangent cone of any point appearing on a Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure of the singularity. The second result says that for any log Fano variety with the torus action, $K$-polystability is equivalent to equivariant $K$-polystability, that is, to check $K$-polystability, it is sufficient to check special test configurations which are equivariant under the torus action.References
- Robert J. Berman, K-polystability of ${\Bbb Q}$-Fano varieties admitting Kähler-Einstein metrics, Invent. Math. 203 (2016), no. 3, 973–1025. MR 3461370, DOI 10.1007/s00222-015-0607-7
- Robert J. Berman, Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi, Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, J. Reine Angew. Math. 751 (2019), 27–89. MR 3956691, DOI 10.1515/crelle-2016-0033
- Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468. MR 2601039, DOI 10.1090/S0894-0347-09-00649-3
- Harold Blum, Existence of valuations with smallest normalized volume, Compos. Math. 154 (2018), no. 4, 820–849. MR 3778195, DOI 10.1112/S0010437X17008016
- S. Boucksom, T. de Fernex, C. Favre, and S. Urbinati, Valuation spaces and multiplier ideals on singular varieties, Recent advances in algebraic geometry, London Math. Soc. Lecture Note Ser., vol. 417, Cambridge Univ. Press, Cambridge, 2015, pp. 29–51. MR 3380442
- Sébastien Boucksom, Tomoyuki Hisamoto, and Mattias Jonsson, Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 2, 743–841 (English, with English and French summaries). MR 3669511, DOI 10.5802/aif.3096
- Sébastien Boucksom and Mattias Jonsson, Tropical and non-Archimedean limits of degenerating families of volume forms, J. Éc. polytech. Math. 4 (2017), 87–139 (English, with English and French summaries). MR 3611100, DOI 10.5802/jep.39
- Tristan C. Collins and Gábor Székelyhidi, K-semistability for irregular Sasakian manifolds, J. Differential Geom. 109 (2018), no. 1, 81–109. MR 3798716, DOI 10.4310/jdg/1525399217
- Xiuxiong Chen, Song Sun, and Bing Wang, Kähler-Ricci flow, Kähler-Einstein metric, and K-stability, Geom. Topol. 22 (2018), no. 6, 3145–3173. MR 3858762, DOI 10.2140/gt.2018.22.3145
- Ved Datar and Gábor Székelyhidi, Kähler-Einstein metrics along the smooth continuity method, Geom. Funct. Anal. 26 (2016), no. 4, 975–1010. MR 3558304, DOI 10.1007/s00039-016-0377-4
- Tommaso de Fernex, János Kollár, and Chenyang Xu, The dual complex of singularities, Higher dimensional algebraic geometry—in honour of Professor Yujiro Kawamata’s sixtieth birthday, Adv. Stud. Pure Math., vol. 74, Math. Soc. Japan, Tokyo, 2017, pp. 103–129. MR 3791210, DOI 10.2969/aspm/07410103
- S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289–349. MR 1988506, DOI 10.4310/jdg/1090950195
- Simon Donaldson and Song Sun, Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, II, J. Differential Geom. 107 (2017), no. 2, 327–371. MR 3707646, DOI 10.4310/jdg/1506650422
- Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith, Uniform approximation of Abhyankar valuation ideals in smooth function fields, Amer. J. Math. 125 (2003), no. 2, 409–440. MR 1963690, DOI 10.1353/ajm.2003.0010
- Kento Fujita, A valuative criterion for uniform K-stability of $\Bbb Q$-Fano varieties, J. Reine Angew. Math. 751 (2019), 309–338. MR 3956698, DOI 10.1515/crelle-2016-0055
- Christopher D. Hacon, James McKernan, and Chenyang Xu, ACC for log canonical thresholds, Ann. of Math. (2) 180 (2014), no. 2, 523–571. MR 3224718, DOI 10.4007/annals.2014.180.2.3
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Weiyong He and Jun Li, Geometric pluripotential theory on Sasaki manifolds, J. Geom. Anal. 31 (2021), no. 2, 1093–1179. MR 4215260, DOI 10.1007/s12220-019-00257-5
- Hans-Joachim Hein and Song Sun, Calabi-Yau manifolds with isolated conical singularities, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 73–130. MR 3735865, DOI 10.1007/s10240-017-0092-1
- Nathan Ilten and Hendrik Süss, K-stability for Fano manifolds with torus action of complexity 1, Duke Math. J. 166 (2017), no. 1, 177–204. MR 3592691, DOI 10.1215/00127094-3714864
- Mattias Jonsson and Mircea Mustaţă, Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 6, 2145–2209 (2013) (English, with English and French summaries). MR 3060755, DOI 10.5802/aif.2746
- George R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299–316. MR 506989, DOI 10.2307/1971168
- János Kollár, Seifert $G_m$-bundles, arXiv:math/0404386 (2004).
- János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950, DOI 10.1017/CBO9781139547895
- János Kollár, Families of varieties of general type, https://web.math.princeton.edu/~kollar/book/modbook20170720-hyper.pdf, 2017.
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR 2095472, DOI 10.1007/978-3-642-18808-4
- Robert Lazarsfeld and Mircea Mustaţă, Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 5, 783–835 (English, with English and French summaries). MR 2571958, DOI 10.24033/asens.2109
- Chi Li, K-semistability is equivariant volume minimization, Duke Math. J. 166 (2017), no. 16, 3147–3218. MR 3715806, DOI 10.1215/00127094-2017-0026
- Chi Li, Yau-Tian-Donaldson correspondence for K-semistable Fano manifolds, J. Reine Angew. Math. 733 (2017), 55–85. MR 3731324, DOI 10.1515/crelle-2014-0156
- Chi Li, Minimizing normalized volumes of valuations, Math. Z. 289 (2018), no. 1-2, 491–513. MR 3803800, DOI 10.1007/s00209-017-1963-3
- Chi Li and Yuchen Liu, Kähler-Einstein metrics and volume minimization, Adv. Math. 341 (2019), 440–492. MR 3872852, DOI 10.1016/j.aim.2018.10.038
- Chi Li, Xiaowei Wang, and Chenyang Xu, On the proper moduli spaces of smoothable Kähler-Einstein Fano varieties, Duke Math. J. 168 (2019), no. 8, 1387–1459. MR 3959862, DOI 10.1215/00127094-2018-0069
- Chi Li and Chenyang Xu, Special test configuration and K-stability of Fano varieties, Ann. of Math. (2) 180 (2014), no. 1, 197–232. MR 3194814, DOI 10.4007/annals.2014.180.1.4
- Chi Li and Chenyang Xu, Stability of valuations: higher rational rank, Peking Math. J. 1 (2018), no. 1, 1–79. MR 4059992, DOI 10.1007/s42543-018-0001-7
- Chi Li and Chenyang Xu, Stability of valuations and Kollár components, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 8, 2573–2627. MR 4118616, DOI 10.4171/JEMS/972
- Alvaro Liendo and Hendrik Süss, Normal singularities with torus actions, Tohoku Math. J. (2) 65 (2013), no. 1, 105–130. MR 3049643, DOI 10.2748/tmj/1365452628
- Yuchen Liu, The volume of singular Kähler-Einstein Fano varieties, Compos. Math. 154 (2018), no. 6, 1131–1158. MR 3797604, DOI 10.1112/S0010437X18007042
- Dario Martelli, James Sparks, and Shing-Tung Yau, Sasaki-Einstein manifolds and volume minimisation, Comm. Math. Phys. 280 (2008), no. 3, 611–673. MR 2399609, DOI 10.1007/s00220-008-0479-4
- P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 51, Tata Institute of Fundamental Research, Bombay; Narosa Publishing House, New Delhi, 1978. MR 546290
- Yuji Odaka, A generalization of the Ross-Thomas slope theory, Osaka J. Math. 50 (2013), no. 1, 171–185. MR 3080636
- Cristiano Spotti, Song Sun, and Chengjian Yao, Existence and deformations of Kähler-Einstein metrics on smoothable $\Bbb {Q}$-Fano varieties, Duke Math. J. 165 (2016), no. 16, 3043–3083. MR 3566198, DOI 10.1215/00127094-3645330
- Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37. MR 1471884, DOI 10.1007/s002220050176
- Masataka Tomari and Keiichi Watanabe, Filtered rings, filtered blowing-ups and normal two-dimensional singularities with “star-shaped” resolution, Publ. Res. Inst. Math. Sci. 25 (1989), no. 5, 681–740. MR 1031224, DOI 10.2977/prims/1195172704
- Xiaowei Wang, Height and GIT weight, Math. Res. Lett. 19 (2012), no. 4, 909–926. MR 3008424, DOI 10.4310/MRL.2012.v19.n4.a14
- Chenyang Xu, A minimizing valuation is quasi-monomial, Ann. of Math. (2) 191 (2020), no. 3, 1003–1030. MR 4088355, DOI 10.4007/annals.2020.191.3.6
- Chenyang Xu and Ziquan Zhuang, Uniqueness of the minimizer of the normalized volume function, arXiv:2005.08303 (2020).
- Ziquan Zhuang, Optimal destabilizing centers and equivariant K-stability, arXiv:2004.09413 (2020).
Bibliographic Information
- Chi Li
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-2067
- Address at time of publication: Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854-8019
- MR Author ID: 929302
- ORCID: 0000-0001-8725-9389
- Email: chi.li@rutgers.edu
- Xiaowei Wang
- Affiliation: Department of Mathematics and Computer Science, Rutgers University, Newark, New Jersey 07102-1222
- MR Author ID: 696391
- ORCID: 0000-0003-1935-1786
- Email: xiaowwan@rutgers.edu
- Chenyang Xu
- Affiliation: BICMR, Beijing 100871, People’s Republic of China; and MIT, Cambridge, Massachussetts 02139
- Address at time of publication: Princeton University, Princeton, New Jersey 08544
- MR Author ID: 788735
- ORCID: 0000-0001-6627-3069
- Email: chenyang@princeton.edu
- Received by editor(s): May 29, 2018
- Received by editor(s) in revised form: January 1, 2019, October 19, 2020, and December 19, 2020
- Published electronically: April 9, 2021
- Additional Notes: The first author was supported in part by NSF Grants DMS-1636488 and DMS-1810867, and an Alfred P. Sloan research fellowship.
The second author was supported in part by a Collaboration Grants for Mathematicians from Simons Foundation: 281299/631318 and NSF Grant DMS-1609335.
The third author was supported in part by ‘Chinese National Science Fund for Distinguished Young Scholars (11425101)’ and NSF Grant DMS-1901849. - © Copyright 2021 American Mathematical Society
- Journal: J. Amer. Math. Soc. 34 (2021), 1175-1214
- MSC (2020): Primary 14J17, 14J45
- DOI: https://doi.org/10.1090/jams/974
- MathSciNet review: 4301561