Quasi-morphisms on surface diffeomorphism groups
HTML articles powered by AMS MathViewer
- by Jonathan Bowden, Sebastian Wolfgang Hensel and Richard Webb;
- J. Amer. Math. Soc. 35 (2022), 211-231
- DOI: https://doi.org/10.1090/jams/981
- Published electronically: June 24, 2021
- HTML | PDF
Abstract:
We show that the identity component of the group of diffeomorphisms of a closed oriented surface of positive genus admits many unbounded quasi-morphisms. As a corollary, we also deduce that this group is not uniformly perfect and its fragmentation norm is unbounded, answering a question of Burago–Ivanov–Polterovich. As a key tool we construct a hyperbolic graph on which these groups act, which is the analog of the curve graph for the mapping class group.References
- J. M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, and H. Short, Notes on word hyperbolic groups, Group theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 3–63. Edited by Short. MR 1170363
- Tarik Aougab, Uniform hyperbolicity of the graphs of curves, Geom. Topol. 17 (2013), no. 5, 2855–2875. MR 3190300, DOI 10.2140/gt.2013.17.2855
- Augustin Banyaga, The structure of classical diffeomorphism groups, Mathematics and its Applications, vol. 400, Kluwer Academic Publishers Group, Dordrecht, 1997. MR 1445290, DOI 10.1007/978-1-4757-6800-8
- Christophe Bavard, Longueur stable des commutateurs, Enseign. Math. (2) 37 (1991), no. 1-2, 109–150 (French). MR 1115747
- Juliette Bavard, Hyperbolicité du graphe des rayons et quasi-morphismes sur un gros groupe modulaire, Geom. Topol. 20 (2016), no. 1, 491–535 (French, with English and French summaries). MR 3470720, DOI 10.2140/gt.2016.20.491
- A. Brown, D. Damjanovic, and D. Zhang. $C^1$ actions on manifolds by lattices in Lie groups, arXiv:1801.04009, 2018.
- Mladen Bestvina and Koji Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002), 69–89. MR 1914565, DOI 10.2140/gt.2002.6.69
- A. Brown, D. Fisher, and S. Hurtado. Zimmer’s conjecture: Subexponential growth, measure rigidity, and strong property(T), arXiv:1710.02735, 2016.
- A. Brown, D. Fisher, and S. Hurtado. Zimmer’s conjecture for actions of $\mathrm {SL}(m,\mathbb {Z})$. arXiv:1710.02735, 2017.
- J. Barge and É. Ghys, Cocycles d’Euler et de Maslov, Math. Ann. 294 (1992), no. 2, 235–265 (French). MR 1183404, DOI 10.1007/BF01934324
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Dmitri Burago, Sergei Ivanov, and Leonid Polterovich, Conjugation-invariant norms on groups of geometric origin, Groups of diffeomorphisms, Adv. Stud. Pure Math., vol. 52, Math. Soc. Japan, Tokyo, 2008, pp. 221–250. MR 2509711, DOI 10.2969/aspm/05210221
- Michael Brandenbursky and MichałMarcinkowski, Entropy and quasimorphisms, J. Mod. Dyn. 15 (2019), 143–163. MR 3983639, DOI 10.3934/jmd.2019017
- Brian H. Bowditch, Uniform hyperbolicity of the curve graphs, Pacific J. Math. 269 (2014), no. 2, 269–280. MR 3238474, DOI 10.2140/pjm.2014.269.269
- Robert Brooks, Some remarks on bounded cohomology, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., No. 97, Princeton Univ. Press, Princeton, NJ, 1981, pp. 53–63. MR 624804
- Matt Clay, Kasra Rafi, and Saul Schleimer, Uniform hyperbolicity of the curve graph via surgery sequences, Algebr. Geom. Topol. 14 (2014), no. 6, 3325–3344. MR 3302964, DOI 10.2140/agt.2014.14.3325
- F. Dahmani, V. Guirardel, and D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc. 245 (2017), no. 1156, v+152. MR 3589159, DOI 10.1090/memo/1156
- David B. A. Epstein and Koji Fujiwara, The second bounded cohomology of word-hyperbolic groups, Topology 36 (1997), no. 6, 1275–1289. MR 1452851, DOI 10.1016/S0040-9383(96)00046-8
- Robert D. Edwards and Robion C. Kirby, Deformations of spaces of imbeddings, Ann. of Math. (2) 93 (1971), 63–88. MR 283802, DOI 10.2307/1970753
- H. Endo and D. Kotschick, Bounded cohomology and non-uniform perfection of mapping class groups, Invent. Math. 144 (2001), no. 1, 169–175. MR 1821147, DOI 10.1007/s002220100128
- Michael Entov and Leonid Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not. 30 (2003), 1635–1676. MR 1979584, DOI 10.1155/S1073792803210011
- Michael Entov, Leonid Polterovich, and Pierre Py, On continuity of quasimorphisms for symplectic maps, Perspectives in analysis, geometry, and topology, Progr. Math., vol. 296, Birkhäuser/Springer, New York, 2012, pp. 169–197. With an appendix by Michael Khanevsky. MR 2884036, DOI 10.1007/978-0-8176-8277-4_{8}
- D. B. A. Epstein, The simplicity of certain groups of homeomorphisms, Compositio Math. 22 (1970), 165–173. MR 267589
- Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125
- Koji Fujiwara, The second bounded cohomology of a group acting on a Gromov-hyperbolic space, Proc. London Math. Soc. (3) 76 (1998), no. 1, 70–94. MR 1476898, DOI 10.1112/S0024611598000033
- Jean-Marc Gambaudo and Étienne Ghys, Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynam. Systems 24 (2004), no. 5, 1591–1617. MR 2104597, DOI 10.1017/S0143385703000737
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Ursula Hamenstädt, Bounded cohomology and isometry groups of hyperbolic spaces, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 2, 315–349. MR 2390326, DOI 10.4171/JEMS/112
- W. J. Harvey, Boundary structure of the modular group, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., No. 97, Princeton Univ. Press, Princeton, NJ, 1981, pp. 245–251. MR 624817
- Sebastian Hensel, Piotr Przytycki, and Richard C. H. Webb, 1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 4, 755–762. MR 3336835, DOI 10.4171/JEMS/517
- Dieter Kotschick, Stable length in stable groups, Groups of diffeomorphisms, Adv. Stud. Pure Math., vol. 52, Math. Soc. Japan, Tokyo, 2008, pp. 401–413. MR 2509718, DOI 10.2969/aspm/05210401
- Irwin Kra, On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces, Acta Math. 146 (1981), no. 3-4, 231–270. MR 611385, DOI 10.1007/BF02392465
- Kathryn Mann, A short proof that $\textrm {Diff}_c(M)$ is perfect, New York J. Math. 22 (2016), 49–55. MR 3484676
- John N. Mather, The vanishing of the homology of certain groups of homeomorphisms, Topology 10 (1971), 297–298. MR 288777, DOI 10.1016/0040-9383(71)90022-X
- John N. Mather, Commutators of diffeomorphisms, Comment. Math. Helv. 49 (1974), 512–528. MR 356129, DOI 10.1007/BF02566746
- John Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958), 215–223. MR 95518, DOI 10.1007/BF02564579
- Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103–149. MR 1714338, DOI 10.1007/s002220050343
- H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000), no. 4, 902–974. MR 1791145, DOI 10.1007/PL00001643
- Howard Masur and Saul Schleimer, The geometry of the disk complex, J. Amer. Math. Soc. 26 (2013), no. 1, 1–62. MR 2983005, DOI 10.1090/S0894-0347-2012-00742-5
- Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science Publications. MR 1373431
- James Munkres, Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann. of Math. (2) 72 (1960), 521–554. MR 121804, DOI 10.2307/1970228
- D. Osin, Acylindrically hyperbolic groups, Trans. Amer. Math. Soc. 368 (2016), no. 2, 851–888. MR 3430352, DOI 10.1090/tran/6343
- Piotr Przytycki and Alessandro Sisto, A note on acylindrical hyperbolicity of mapping class groups, Hyperbolic geometry and geometric group theory, Adv. Stud. Pure Math., vol. 73, Math. Soc. Japan, Tokyo, 2017, pp. 255–264. MR 3728501, DOI 10.2969/aspm/07310255
- Pierre Py, Quasi-morphismes et invariant de Calabi, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 1, 177–195 (French, with English and French summaries). MR 2224660, DOI 10.1016/j.ansens.2005.11.003
- Alexander J. Rasmussen, Uniform hyperbolicity of the graphs of nonseparating curves via bicorn curves, Proc. Amer. Math. Soc. 148 (2020), no. 6, 2345–2357. MR 4080879, DOI 10.1090/proc/14880
- David Ruelle, Rotation numbers for diffeomorphisms and flows, Ann. Inst. H. Poincaré Phys. Théor. 42 (1985), no. 1, 109–115 (English, with French summary). MR 794367
- Egor Shelukhin, The action homomorphism, quasimorphisms and moment maps on the space of compatible almost complex structures, Comment. Math. Helv. 89 (2014), no. 1, 69–123. MR 3177909, DOI 10.4171/CMH/313
- Alexander I. Shtern, Remarks on pseudocharacters and the real continuous bounded cohomology of connected locally compact groups, Ann. Global Anal. Geom. 20 (2001), no. 3, 199–221. MR 1866414, DOI 10.1023/A:1012296430651
- William Thurston, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 304–307. MR 339267, DOI 10.1090/S0002-9904-1974-13475-0
- Takashi Tsuboi, On the uniform perfectness of diffeomorphism groups, Groups of diffeomorphisms, Adv. Stud. Pure Math., vol. 52, Math. Soc. Japan, Tokyo, 2008, pp. 505–524. MR 2509724, DOI 10.2969/aspm/05210505
- Takashi Tsuboi, On the uniform perfectness of the groups of diffeomorphisms of even-dimensional manifolds, Comment. Math. Helv. 87 (2012), no. 1, 141–185. MR 2874899, DOI 10.4171/CMH/251
Bibliographic Information
- Jonathan Bowden
- Affiliation: Mathematisches Institut, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- MR Author ID: 873123
- Email: jonathan.bowden@ur.de
- Sebastian Wolfgang Hensel
- Affiliation: Mathematisches Institut der Universität München, Theresienstraße 39, 80333 München, Germany
- MR Author ID: 938076
- ORCID: 0000-0002-9369-4173
- Email: hensel@math.lmu.de
- Richard Webb
- Affiliation: Department of Mathematics, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- MR Author ID: 1104740
- ORCID: 0000-0001-9161-0928
- Email: richard.webb@manchester.ac.uk
- Received by editor(s): March 30, 2020
- Received by editor(s) in revised form: January 31, 2021, and March 17, 2021
- Published electronically: June 24, 2021
- Additional Notes: The first and second authors were supported by the Special Priority Programme SPP 2026 Geometry at Infinity funded by the DFG. The third author was supported by the EPSRC Fellowship EP/N019644/2.
- © Copyright 2021 by the authors
- Journal: J. Amer. Math. Soc. 35 (2022), 211-231
- MSC (2020): Primary 20F65, 57Sxx
- DOI: https://doi.org/10.1090/jams/981
- MathSciNet review: 4322392
Dedicated: Dedicated to Mladen Bestvina on the occasion of his 60th birthday.